
SCREENING FOR BIOTINIDASE DEFICIENCY IN NEONATES AND SOME PATIENTS WITH NEUROLOGIC DISORDERS

THESIS

Submitted to

Faculty of Science Ain Shams University

For the degree of

MASTER OF SCIENCE

By

RANDA MOHAMED SALAH EL-DIN ABD EL-SALAM

B. Sc. Biochemistry

~ 964

Supervised by

Prof. Dr.

NADIA M. ABDALLAH

Professor and Head of Biochemistry Department

Faculty of Science

Ain shams University

Prof. Dr.

SAMIA A. EL-TEMTAMY

Professor of Human Genetics,

Human Genetics Department

National Research Centre

Dr. AMR YOUSSEF EZZ EL-DIN ESMAT

Lecturer of Biochemistry

Faculty of Science

Ain shams University

1994

I am greatly indebted to my parents and husband and deep thanks to my children

THIS THESIS HAS NOT BEEN SUBMITTED FOR A DEGREE AT THIS OR ANY OTHER UNIVERSITY.

RANDA MOHAMED SALAH EL-DIN ABD EL-SALAM

<u>ACKNOLEDGEMENT</u>

"First and foremost, thanks are due to God, the Beneficent and Merciful".

I would like to express my deep thanks and gratitude to Professor *Dr. Nadia M. Abdallah*, Professor and Head of Biochemistry Department, Ain Shams University, for giving me the honour of working under her supervision, for her valuable help and guidance throughout the whole work and above all for her human understanding, kindness and inforgettable sincere encouragement.

I am greatly honoured to express my sincere and deep thanks and gratitude to Professor *Dr. Samia A. El Temtamy*, Professor of Genetics, Genetics Department, National Research Center, for giving me the honour of working under her supervision and guidance, and for her continuous encouragment, support and valuable instructions throughout the whole work and forever.

I would like to express my deep thanks to *Dr. Amr Ezz El-Din*, Lecturer of Biochemistry Department, Ain Shams University, for his help, support and continuous encouragement during the progress of this work. He dedicated much of his valuable time toward revising the manuscript before putting it in the final form.

I wish also to convay a meaningful massage of gratitude to *Dr. Ekram Fatin* Lecturer of Biochemistry, Genetics Department, National Research Center, for her sincere advice, generous and continuous help during the progress of this work.

I should pay my utmost gratitude to all staff and my colleagues in Genetics Department, National Research Center, Who all over the years helped and assisted me.

Finally, my deep appreciation is expressed to the patients of Outpatient Genetics Clinic of National Research Center.

ABBREVIATIONS

Ala Alanine

Arg Arginine

BPAB Biotinyl-p-aminobenzoate

C.T. Computerized tomography

CoA Co enzyme A

CRM Cross-reacting material

Cys Cysteine

CyS-Scy Cystine

DNPH Dinitrophenyl hydrazine

E. Coli Escherichia Coli

EDTA Ethylene diamine tetracetate

Glu Glutamic acid

Gly Glycine

HCL Hydrochloric acid

His Histidine

IEF Isoelectric Focusing gel electrophoresis

Leu Leucine

LMCD Late onset, biotin responsive, multiple carboxylase deficiency

MCD Multiple carboxylase deficiency

N.R.C National Research Center

PABA P-aminobenzoic acid

phe Phenylalanine

Pro Proline

S&S (Schleucher and Schuell) filter paper card

S.D. Standard Deviation

Ser. Serine

STLC Serum thin layer chromatography

Thr Threonine

Trp Tryptophan

Tyr Tyrosine

ULTC Urine Thin layer crhomatography

Val Valine

 \overline{X} Arithmetic means

CONTENTS

CHAPTER I	Page
A) Introduction	
1. Biotin	1
1.1. Biogenesis	2
1.2. Metabolism	4
1.3. Deficiency	8
1.4. Sources & Requirements	10
2. Disordersof Biotin Metabolism	11
2.1. Carboxylase Deficiencies	11
2.2 Biotinidase Deficiency	12
3. Clinical Features of Biotinidase Deficiency	14
3.1 Profound Deficiency	14
3.2 Partial Deficiency	18
3.3 Incidence and Mode of Inheritance	19
4. Biomedical Features of Biotinidase Deficiency	20
4.1 Characteristics of the Normal Enzyme	20
4.2 Biochemical Diagnosis	22
4.3 Biochemical Abnormalities	23
5. Pathophysiologic Consideration of Biotinidase-	20
Deficiency	97
6. Treatment of Biotinidage Deficier	27
7. Prenatal Diagnosis	29

	8.	Neo	nata	al Screenir	ng		••••		32
	9.	Diff	eren	itial Diagn	osis	• • • • • • • • • • • • • • • • • • • •			33
B)	Aiı	n of	The	Work					37
CHAP	rer	II.	MA	TERIALS	AND M	ETHOD	s		
\mathbf{A}) Ma	iteria	ub au	nd Subject	ls				38
B)	Me	thod	s	• • • • • • • • • • • • • • • • • • • •					46
1)	Col	lorin	etri	c Screenin	g for Bio	otindias	e Activity.		46
2)	Qu	antit	ativ	e Determir	nation of	Biotini	dase Activ	ity	49
3)	Me	tabo	lic S	creeing Te	ests	• • • • • • • • • • • • • • • • • • • •			51
	3.1	Fer	ric (Chloride T	`est	• • • • • • • • • • • • • • • • • • • •		•••••	51
	3.2	Су	aride	e Nitropru	sside Te	st		• • • • • • • • • • • • • • • • • • • •	54
	3.3	2,4	Dir	nitropheny	ıl Hydra	zine Tes	st		56
4)	Th	in L	ayer	Chromato	graphy	(TLC)			58
	4.1	Ur	ine :	Thin Laye	r Chrom	atograp	hy		59
	4.2	Sei	rum	Thin Laye	er Chror	natogra	phy		60
5)	Sta	atisti	cal	Analysis .	•••••	•••••			61
CHAP	rer.	ш							
R	esult	s		•••••			•••••		63
CHAP	ŒR	IV							
Di	iscus	sion	١	•••••			******		93
CHAP	ŒR	\mathbf{v}							
\mathbf{A}	Su	mma	ary .			•••••			111
B)	Re	ferer	ıces						115
C)	Ar	abic	Sun	ımary	• • • • • • • • • • • • • • • • • • • •				<u></u>

LIST OF FIGURES

Fig.No	•	Page
1.1	Proposed pathway for biosynthesis of biotin in E. coli	8
	and other organisms	3
1.2	The biotin cycle demonstrates the metabolic recycling	
	of biotin	6
1.3	The mechanism of pyruvate carboxylase involves	
	biotinyl group attached to a lysine residue	7
3.1	Sex Distribution	64
3.2	Consanguinity incidence	65
3.3	Twins incidence	66
3.4	Screening of biotindiase actrivity among the studied	
	neonates and infants	69
3.5	A 12 well plate for screening of biotinidase activity in	
	normal cases (positive test or purple colour)	71
3.6	A 12 well plate for screening of biotinidase activity	
	in cases with decreased biotinidase activity (pale	
	purple colour)	72
3.7	Histogram showing the percent incidence of biotini-	
	dase deficiency in the twins cases of studied infants	
	and neonates	78
3.8	Changes in serum biotinidase activity of all studied	
	groups	82
3.9	TLC aminogram of the serum of normal controls	91
3.10	TLC aminogram of urine of normal controls	00

LIST OF TABLES

Table	No.	Page
1.1	Frequency of clinical and biochemical features in	- 450
	children with biotinidase deficiency	16
1.2	Disordersinitially diagnosed in children subsequently	
	found to have biotinidase deficiency	36
2.1	Clinical data for neonates and infants suffering from	
	decreased biotinidase activity	41
2.2	Clinical data for patients suffering from undiagnosed	
	neurological disorders	43
2.3	Colour reaction of various compounds with ferric	
	chloride reagent	53
3.1	Comparison of the levels of serum biotinidase activity	
	(nmol/min/ml) in normal neonates, infants and adults	67
3.2	levels of serum biotinidase activity (nmol/min/ml)	-
	in affected infants and some of their family members.	73
3.3	Levels of serum biotinidase activity (nmol/min/ml) in	
	affected infants and some of their family members who	
	responded for a second assay after a period of 1 year.	76
3.4	Changes in the levels of serum biotinidase activity	
	(nmol/min/ml) in patients with undiagnosed	
	neurological disorders	79

3.5	Urinary metabolic screening tests for affected infants	
	and some of their family members	83
3.6	Urine and serum thin layer chromatography for	
	affected infants and some of their family members.	85
3.7	Metabolic screening tests for patients with undiag-	
	nosed neurologic disorders and some of their family	
	members	87
3.8	Urine and serum thin layer chromatography for	
	patients with undiagnosed neurologic disorders and	
	some of their family members	89

CHAPTER I

A) INTRODUCTION