STUDIES ON THE ADDITION OF NUCLEOPHILES TO ISOTHIOCYANATES

411.2

A THESIS

Submitted By

ABD - EL - MONEIM ABD - EL - RAHMAN SAAD

M. Sc.

SHA

For The Degree of Ph. D.

(در المعالمة المعالمة

جامعة عين شمس كاية العلوم الدراسات العليا

Faculty of Science
Ain Shams University

20016

1985

ADDITION OF SOME NEUCLEOPHILES INCLUDING SUGARS TO ISOTHIOCYANATES AND SOME REACTIONS ON THE PRODUCTS

Thesis Advisors

Prof. Dr. Gamal El-Din M. Moussa ...

Dr. S.I. El-Nagdy ... S.I. El-Nagdy

Prof. Dr. J.E.M. Moussa

Head of Chemistry Department

ACKNOWLEDGEMENT

The author wishes to express his deep thanks and gratitude to Prof. Dr. Gamal El-Din M. Moussa, Head of Chemistry Department, Faculty of Science, Ain Shams University, not only for suggesting the subject, but also for his close supervision, guidance and real help, without which this work could not have been accomplished.

The author also wishes to thank Prof. Dr. M.N.

Bassyouni (late), Dr. A.F. El-Kafrawy, Dr. S.I. El-Nagdy.

lecturers of Organic Chemistry and Dr. M.E. Shaban,

Assistant Prof. of Organic Chemistry, Faculty of Science.

Ain Shams University, for their valuable assistance and advice.

CONTENTS

					Page
53111	diaaky				i
112	PRODU	OTTO1	١		1
Λ)				d classification of es	1
日)	Resto	tivit	ty of	heterocumulenes	5
C)	Phys eumu	sico-c ilenes	chemic	cal data of hetero-	8
D)	Restro	tions	e of i	heterocumulenes	11
	(1)	organ	nic no	lic addition reactions of acleophiles to iso-	11
		(i) /	ddit: to are	ion of oxygen nucleophiles oyl isothiocyanates	12
		(ii)	Addi to a	tion of sulphur nucleophiles royl isothiocyanates	16
		(iii)	Add:	ition of nitrogen nucleophiles aroyl isothiocyanates	18
			(a)	Addition of aliphatic and aromatic amines	19
			(b)	Addition of heterocyclic amines	26
			(c)	Addition of hydrazines, hydrazones and related compounds	3 5
			(d)	Addition of amino compounds	45
		(vi)		oaddition reactions of iso-	57

	Page
DISCUSSION OF ORIGINAL WORK	
Alm of the present investigation	59
(A) Addition of S-benzylisothiourea hydrochloride to aroyl iso- thiocyanates	61
(B) Action of amines on 2(4)-benzyl- mercapto-1,6-dihydro-6-thiono- 4(2)-aryl-1,3,5-triazines	68
(C) Methylation of 2(4)-substituted amino- l,6-dihydro-6-thiono-4(2)-aryl-1,3,5- triazines	72
(1) Action of acrylonitrile on 2(4)- substituted amino-1,6-dihydro-6- thiono-4(2)-aryl-1,3,5-triazines	75
(E) Action of acetic anhydride on 2(4)-substituted amino-1,6-dihydro-6-thiono-4(2)-aryl-1,3,5-triazines	77
EXPERIMANTAL	80
LIST OF NEW COMPOUNDS	127
REFERENCES	134
CURLIARY IN ARABIC	

- i -S U M M A R Y

The thesis describes the nucleophilic addition of S-benzylthiourea hydrochloride, in presence of sodium hydroxide, to benzoyl, styryl and p-chlorobenzoyl isothiocyanates (IXa-c), respectively. Formation of 2(4)-benzylmercapto-1,6-dihydro-6-thiono-4(2)-phenyl(CXXVa), styryl (CXXVb) and p-chlorophenyl (CXXVc)-1,3,5-triazines. respectively, infers that, the nucleophile attacks the C=S function of the dielectrophilic reagents (IXa-c) exclusively, by the unsubstituted nitrogen atom, i.e., -NH2 group of S-benzyl-thiourea hydrochloride.

Reactions of morpholine, piperidine, <u>n</u>-butylamine, benzylamine and some aromatic amines such as <u>p</u>-toluidine, <u>p</u>-anisidine and aniline, as nucleophiles, with 2(4)-benzyl-mercapto-1,6-dihydro-6-thiono-4(2)-phenyl (CXXV<u>a</u>), styryl (CXXV<u>b</u>) and <u>p</u>-chlorophenyl (CXXV<u>c</u>)-1,3,5-triazines, respectively, gave 2(4)-substituted amino-1,6-dihydro-6-thiono-4(2)-phenyl (CXXVI<u>a</u>; la-7a), styryl (CXXVI<u>b</u>, lb-7b) and <u>p</u>-chlorophenyl (CXXVI<u>c</u>; lc-7c)-1,3,5-triazines, respectively, with liberation of benzyl thiol group.

Methylation of 2(4)-substituted amino-1,6-dihydro-6-thiono-4(2)-phenyl (CXXVIa; $1\underline{a}$ - $7\underline{a}$), styryl (CXXVIb; $1\underline{b}$ - $7\underline{b}$) and p-chlorophenyl (CXXVIc; $1\underline{c}$ - $7\underline{c}$)-1,3,5-triazines with methyl iodide in presence of sodium hydroxide afforded the corresponding 2-substituted amino-4-phenyl (CXXVIIIa: $1\underline{a}$ - $7\underline{a}$), styryl (CXXVIIIb; $1\underline{b}$ - $7\underline{b}$) and p-chlorophenyl

(CXXVIIIc; 1c-7c)-6-methylmercapto-1,3,5-triazines, respectively.

Cyanoethylation of 2(4)-substituted amino-1,6-dihydro-6-thiono-4(2)-phenyl (CXXVIa; 3a-7a), styryl (CXXVIb; 3b-7b) and p-chlorophenyl (CXXVIc; 3c-7c)-1,3,5-triazines with acrylonitrile, gave 2-substituted amino-4-phenyl (CXXIXa; la-5a), styryl (CXXIXb; lb-5b) and p-chlorophenyl (CXXIXc; lc-5c)-6-(3-cyanoethyl)-mercapto-1,3,5-triazines, respectively.

Formation of 1-acetyl-2(4)-substituted amino-1,6-dihydro-6-thiono-4(2)-phenyl (CXXXa;la-5a), styryl (CXXXb; lb-5b) and p-chlorophenyl (CXXXc; lc-5c)-1,3,5triazines from action of acetic anhydride on 2(4)substituted amino-1,6-dihydro-6-thiono-4(2)-phenyl (CXXVIa; 3a-7a), styryl (CXXVIb; 3b-7b) and p-chlorophenyl (CXXVIc;3c-7c)-1,3,5-triazines are also investigated.

The structures of all of the products were substantiated from their spectra as well as analytical data.

INTRODUCTION

CENERAL INTRODUCTION

The Chemistry of Heterocumulenes

(A) Definition and classification of heterocumulenes

Cumulenes are compounds with double bonds adjacent to each other. The parent compound of the gem.cumulenes is allene (I), in which the centers as well as the terminal atoms are carbon. If one or more of the atoms of the cumulative system are heteroatoms, such as oxygen, nitrogen or sulphur, they are known to heterocumulenes.

The heterocumulenes can be divided into the groups:

(A) heterocumulenes having one or two heteroatoms in the cumulative arrangement (by this definition one or two earbon atoms are part of the cumulative system) and;

(B) heterocumulenes in which all three atoms in the cucumulative arrangement are heteroatoms.

Group (A) (can be subdivided into three groups:

1) systems with two carbons and one heteroatom; (2) systems with one carbon and two like heteroatoms, and (3) systems with one carbon and two different heteroatoms. Examples of group (A) heterocumulenes are ketene (II), carbon dioxide (III) carbonyl sulphide (IV), isocyanates (V) and

- 2 **-**

isothiocyantes (VI).

$$CH_2 = C = CH_2$$
 $CH_2 = C = 0$ $O = C = 0$ (II) (III) $C = C = S$ $C = C = 0$ (IV) $C = C = S$ (VI)

Group (B) can also be subdivided into two groups:

1) systems with two like heteroatoms; and 2) systems
with three different heteroatoms. Typical examples of
these two groups are sulphur dioxide (VII) and
N-sulphinylamines (VIII).

$$O = S = O$$
 $R - N = S = O$ (VIII)

The heterocumulenes falling within the scope of this definition are listed in Table 1. The three divisions falling under group (A) are denoted A_1 , A_2 and A_3 ; B_1 and B_2 are defined similarly.

Summary of the different classes of the heterocumulenes

Group	Syste	em	Representation	
Al	C=C=X	X=0	Ketenes, carbon suboxide	
		X = NR	Ketenimines	
		X=S	Thicketones	
	C=X=C	X=S	Sulphilidenes	
A ₂	C = X = X	X = N	Diazo compounds	
- -	X = C = X	X≈O	Carbon dioxide	
		X=NR	Carbodiimide	
		X=S	Carbon disulphide	
A 3	C = X = Y	X = N, Y = O	Nitrile oxide	
)		X=NR, Y=0	Nitrones	
		Y = N, Y = NR	Nitrile imines	
		X=NR,Y=NR	Azomethine imines	
		X=S, Y=0	Sulphines	
		X=S0,Y=0	Sulphenes	
	X=C=Y	X=0,Y=S	Carbonyl sulphide	
		X=O, Y=NR	Cyanates	
		X=NR, Y=0	Isocyanates	
		-	Isothiocyanates	
			Thiocyanates	

P.T.O.

mohlo	٦	(cont	1
Trante		(COII).	• <i>1</i>

		······································	
В	X=Y=X	X=0,Y=N X=0,Y=S X=NR,Y=S	Nitric dioxide Sulphur dioxide Sulphur diimide
	X=X=Y	X=N,Y=0 X=NR,Y=0 X=NR,Y=S X=N,Y=NR	Nitrous oxide Azoxy compounds Azo sulphides Azides
B ₂	X = Y = Z	X=N,Y=S,Z=O X=N,Y=SO,Z=O X=S,Y=N,Z=O	N-Sulphinylamines N-Sulphurylamines 8-Nitroso compounds

(B) Reactivity of heterocumulenes

The chemical reactivity of the heterocumulenes ranges from highly reactive species to almost inert compounds. While some heterocumulenes can only be generated <u>in situ</u>, others are indefinitely stable at room temperature.

The broad range of reactivity observed in heterocumulenes is perhaps best exemplified by the fact that
hitherto sulphenes have only been generated in situ,
whereas carbon dioxide is an almost inert gas. Other
heterocumulenes such as sulphur dioxide and carbon disulphide are often used as solvents, thereby demonstrating their relative inertness. While ketenes and isocyanates undergo nucleophilic reactions with active
hydrogen compounds rapidly, ketenimines, isothiocyanates
and carbodimides react considerably slower. For example,
the reaction of isothiocyanates with amines can be
conducted in an alcoholic solvent.

Taking ketene (II) as an example, it is quite obvious that its central carbon atom is electrophilic as shown from the resonating structures of ketene.

The negative charge can be stabilized on the terminal carbon atom as well as on the oxygen, thus leaving the central carbon atom electrophilic in both polar structures. The electrophilicity of the central carbon atom may account for the rapid nucleophilic reactions of ketenes as exemplified in the reaction with alcohol.

In isocyanates (V) the contral carbon atom is also electrophilic and the effect is as follows: electron-withdrawing groups, e.g., the phenyl group attached to the isocyanate group increases the electrophicity of the central carbon atom, whereas electron-donating groups, e.g., alkyl groups reduce its electrophilicity. Furthermore, introduction of an electron-withdrawing groups into phenyl nucleus of aryl isocyanates increases the reactivity, whereas electron-donating groups reduce their reactivity.

The reactivity of the isocyanate group towards