

سيحانك الله العليم الحكيم صدق الله العظيم

(آيــه ۲۲ سورة البقــرة)

Extracorporeal Membrane Oxygenation (ECMO) Therapy In Neonates

ولاستالنس

An Essay Submitted For Partial Fulfilment Of Master Degree Of Paediatrics

48981

Ву

Dr. : Waleed Mohamed Maamoon

M.B., B.ch.

618. 9201 W. M

Supervised By

Dr. : Salah Awwaad

Professor Of Paediatrics Ain Shams University

Ain Shams University 1993

. . . .

NO 100 M

ACKNOWLEDGEMENT

First, Thanks are all due to God for blessing this work until it has reached its end as a little part of his generous help throughout our life .

I would like to express my grateful appreciation to *Prof. Dr. SALAH AWWAAD*, Professor of Paediatrics, Faculty of Medicine, Ain-Shams University, for his continuous encouragement and support that he gave me throughout the whole work. It is a great honour to work under his guidance and supervision.

Waleed M. Maamoon

- 1993 -

CONTENTS

			Page
I	_	Introduction And Aim Of The Present Study	1
II	-	Historical Review Of Neonatal ECMO	3
III	-	Technical considerations Of Neonatal ECMO	6
IV	-	Indications Of Neonatal ECMO	13
v	-	Inclusion And Exclusion Criteria For Neonatal ECMO	24
VI	-	The Use Of ECMO In Paediatric Patients	31
VII	-	Complications Of Neonatal ECMO	42
VII	[-	The Outcome Of ECMO Patients	67
IX	-	Summary And Conclusions	74
X	~	References	. 80
ХI	_	Arabic Summary	101

Abbreviations

A-a DO2 Alveolar-Arterial Oxygen Difference

ACT Activated Clotting Time

AIDS Acquired Immunodeficiency Syndrome

BPD Bronchopulmonary Dysplasia

CDH Congenital Diaphragmatic Hernia

CMT Conventional Medical Therapy

CNS Central Nervous System

CT Computerized Tomography

ECMO Extracorporeal Membrane Oxygenation

EEG Electroencephalogram

ELSO Extracorporeal Life Support Organization

FiO₂ Fraction of Inspired Oxygen

ICH Intracranial Haemorrhage

IQ Intelligence Quotient

IVII Intraventricular Haemorrhage

LFPPV-ECCO2R Low Frequency Positive Pressure Ventilation

With Extracorporeal CO2 Removal

MAP Mean Airway Pressure

MAS Meconium Aspiration Syndrome

NIH National Institutes of Health

NPII Newborn Pulmonary Insufficiency Index

OI Oxygenation Index

PACO₂ Partial Pressure of Alveolar Carbon Dioxide

PaCO₂ Partial Pressure of Arterial Carbon Dioxide

PaO₂ Partial Pressure of Arterial Oxygen

PaO2 / PAO2 Ratio Between Arterial and Alveolar Partial

Pressure of Oxygen

PEEP Positive End Expiratory Pressure

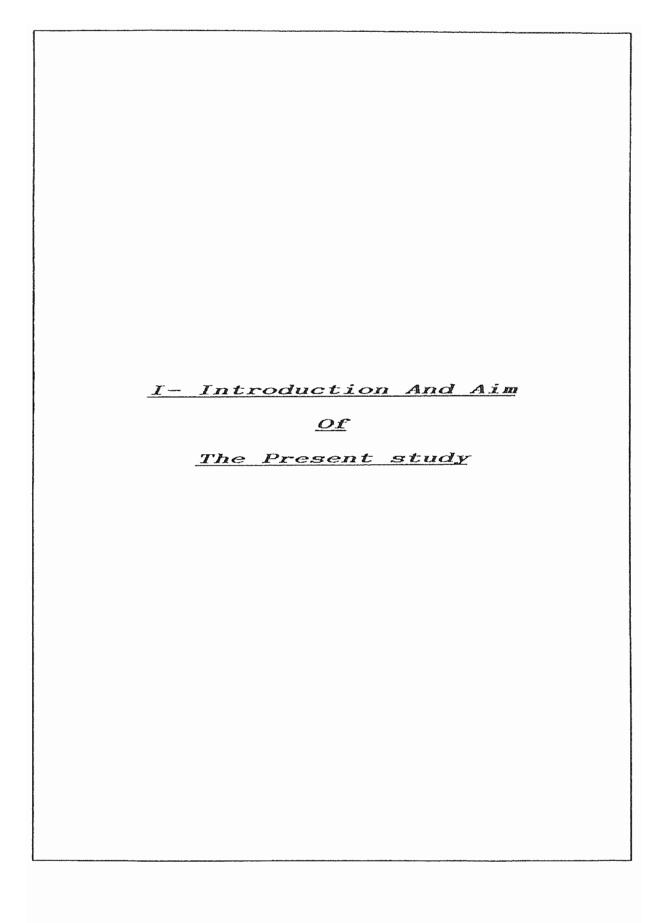
PIP Peak Inspiratory Pressure

PPHN Persistent Pulmonary Hypertension of the Newborn

PRA Plasma Renin Activity

RCCA Right Common Carotid Artery

RDS Respiratory Distress Syndrome


SDs Standard Deviations

SGA Small for Gestational Age

SNIIL Sensorineural Hearing Loss

V-A Veno-Arterial

V-V Veno-Venous

Extracorporeal membrane oxygenation (ECMO) is a modification of cardiopulmonary bypass intraoperative technique. It makes use of prolonged extracorporeal bypass via extrathoracic cannulation, and provides partial or complete heart-lung functions, while the underlying disease resolves. [Brutocao and O'Rourke, 1992].

It cannot be overemphasized that ECMO is not a cure for lung or heart disease, but rather it supports the patient's cardiopulmonary functions, while the disease process abates. Therefore, before the institution of ECMO, it is imperative to identify irreversible lethal damage from the primary disease. [Brutocao and O'Rourke, 1992].

At present, ECMO is the standard care for the support of term neonates with acute respiratory failure. It is being evaluated for paediatric pulmonary and cardiovascular support.

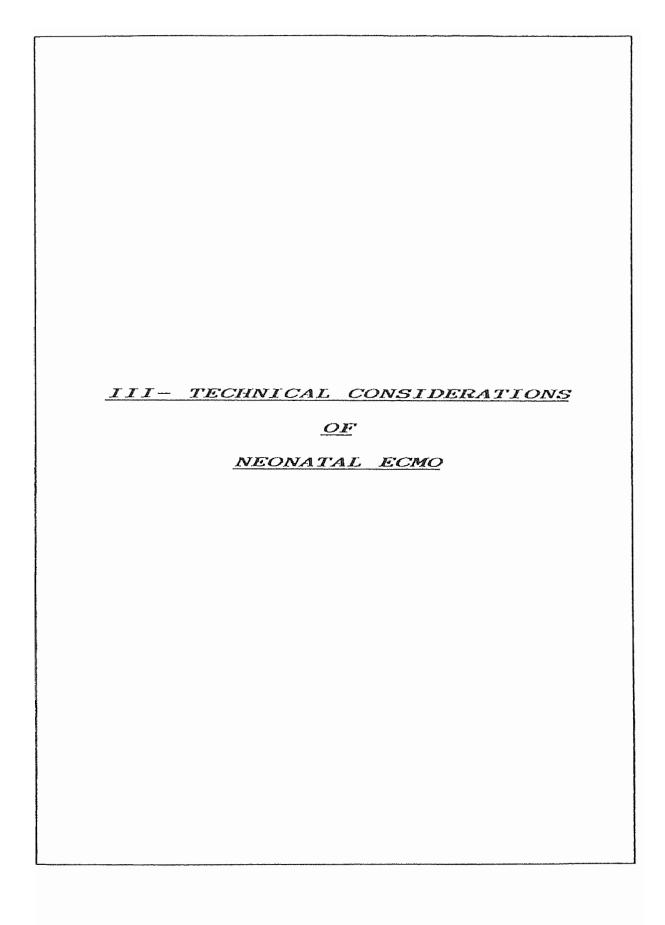
[Brutocao and O'Rourke, 1992].

The present study will include a historical review on the subject of neonatal ECMO, followed by a discussion of the technical considerations, indications, inclusion and exclusion criteria and, complications that may arise during its use. A short account on the use of ECMO for paediatric pulmonary and cardiac support is followed by the outcome of ECMO patients. Finally, our study will close by the summary and conclusions.

	II- HISTORICAL REVIEW
	11- HISTORICAL REVIEW
	\underline{OF}
1	
1	
	NEONATAL ECMO

The first use of ECMO was in adult patients in the early 1970s, where it was used in adult patients with acute respiratory failure refractory to conventional therapy [Zapol et al, 1979] and the first adult survivor was reported by Hill et al (1972). Over the next 5 years there were sporadic clinical series, with cumulative survival of 10-15 % [Short and Pearson, 1986].

Inspite of the low survival rate , the successes were individually dramatic . Continued interest in the subject culminated in a National Institutes of Health (NIH), sponsored multicentre clinical trials, comparing ECMO and conventional mechanical ventilation for the treatment of severe respiratory failure in adults [Zapol et al, 1979]. Ninety-Six patients with 80 % predicted mortality were randomized to conventional mechanical ventilation or ECMO. The results were disappointing as there were no difference in survival of both groups, being 8.7 % for conventional ventilation, versus 9.3 % for ECMO therapy . However, the study design was criticised [Short and Pearson, 1986] and the criticism claimed that prolonged mechanical ventilation (average 9.6 days) predominance of viral and bacterial pneumonia as admission diagnoses, gave most patients a high probability of irreversible lung disease on entery . It is implied that earlier institution of ECMO may have prevented pulmonary fibrosis and improved survival . Despite these criticisms this


NIH study effectively terminated the use of ECMO for adults with acute respiratory failure [Hirschl and Bartlett, 1987].

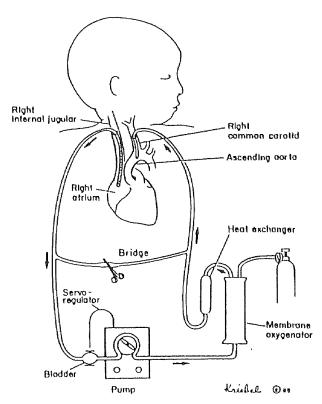
A better population for ECMO therapy appeared with the first neonatal ECMO survivor reported by Bartlett et al (1975). Since that time, there has been remarkable success in managing newborns with persistent pulmonary hypertension refractory to conventional therapy [Bartlett et al, 1986].

In 1982, a registry was formed to collect and organize clinical ECMO data by the Extracorporeal Life Support Organization. By 1991, 4431 full term neonates with acute respiratory failure and persistent pulmonary hypertension having 80 % or greater predicted mortality with continued conventional management, have been supported with ECMO in 76 centres in the USA. Eighty - three per cent (83%) of these infants survived [Extracorporeal Life Support Registry, 1991].

This experience had advanced ECMO from rescue therapy to a state of art [Brutocao and O'Rourke, 1992] .

Presently ECMO support is routinely offered to term neonates with severe hypoxaemia from persistent pulmonary hypertension [Brutocao and O'Rourke, 1992].

Presently , as we mentioned , ECMO is routinely offered to term neonates with severe hypoxaemia from persistent pulmonary hypertension .


The type of ECMO used in these cases, described by $Bartlett\ et\ al\ (1977)$ is veno-arterial, which describes the circuit in which blood exits from the venous system and is returned to the arterial circulation (Fig 1).

The blood of the term neonate is drained from his right atrium through a large catheter (12-14 French gauge). This is accomplished by making an incision in the right side of the neck of the neonate, through which two perfusion cannulae are inserted. One of these is inserted through the internal jugular vein into the right atrium and the second is inserted into the common carotid artery, so that its tip is at the origin of the brachiocephalic artery.

The blood drained from the right atrium flows by gravity to a bladder in the machine (Fig 1), which adds capacitance to the system and acts as a safeguard against inconsistent venous return. The bladder also functions as a trap for any air contained in the venous limb of the circuit. Thenafter, the blood is propelled forward by an occlusive blood pump which is servoregulated to the pressure of the venous return

In the neonate an ECMO flow of 80 - 120 ml / kg / min is usually adequate to support gas exchange : this approximates to one - half to two - thirds of the cardiac output in the normal neonate .

Figure (1)

Venoarterial extracorporeal membrane oxygenation.

[Brutocao and O'Rourke, 1992]