UTILIZATION OF BIOFERTILIZERS TO IMPROVE GARBAGE COMPOST PROPERTIES FOR INCREASING WHEAT YIELD IN DESERT

SOIL

Ву

HODA HASSAN MOHAMED ABDEL-AZEEM

A Thesis submitted in partial fulfillment of the requirements for the degree of

631-169-2

MASTER OF SCIENCE

49350

Ir

Environmental Agriculture Sciences

Institute of Environmental Studies and Research
Ain Shams University

1994

Approval Sheet

Utilization of Biofertilizers to improve garbage compost properties for increasing wheat yield in desert soil

by

HODA HASSAN MOHAMED ABDEL-AZEEM

B.Sc. (Plant Pathology), Fac. Agric.
Ain Shams University, 1974

This Thesis for M.Sc. Degree has been approved by

Prof. Dr. Y.Z. Ishac

Prof. of Agric. Microbiology, Fac. Agric., Ain Shams Univ.

Prof. Dr. F.M. Thabet

F.M. Fhald

Prof. of Agric. Microbiology, Fac. Agric., Monoufia Univ.

Prof. Dr. M.A. El-Borollosy M. D. B. Sile S. W. (Supervisor)

Prof. of Agric. Microbiology, Fac. Agric., Ain Shams Univ.

Date of Examination

A/10/ 1994

ACKNOWLEDGEMENT

Praise and thanks be to ALLAH, the most merciful for assisting and directing me to the right way.

This work has been carried out under the supervision and direction of Prof. Dr. M.A. El-Borollosy, Prof. of Agric. Microbiology, Fac. Agric., Ain-Shams Univ.; Prof. Dr. M.A. El-Sibaie, Head of Soil Fertility and Microbiology Dept., Desert Research Center, Ministry of Agriculture and Prof. Dr. M.A. Shatla, Prof. of Agric. Biochemistry, Fac. Agric., Ain Shams Univ. I wish to express my sincere thanks to them for suggesting the problem, supervision, progressive criticism, keeping interest and guidance.

Grateful appreciation is extended to Dr. Bothaina F. Abd El-Ghani, Head of Microbiology Unit, Desert Res. Cen., for her kind cooperation.

Thanks are also due to all my colleagues and saff members in Soil Fertility and Microbiology Dept., Desert Res. Cen., for encouragement and facilities offered during the work.

LIST OF CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	3
2.1. Application of organic manures to improve	
soil propperties, plant growth and microbial	
activity	3
2.2. Biofertilization	6
2.2.1. Nitrogen fixers as biofertilizers	7
2.2.2. Phosphate dissolvers as biofertilizers	18
2.3. Effectiveness of biofertilizers as influenced	
by available nitrogen compounds in soil	26
3. MATERIALS AND METHODS	29
3.1. Materials	29
3.1.1. Soils used	29
3.1.2. Organic manures	29
3.1.2.1. Garbage compost	29
3.1.2.2. Sheep manure	29
3.1.3. Inorganic fertilizers	30
3.1.4. Cultivars	30
3.1.5. Inoculants	30
3.1.6. Media used	30
3.2. Methods	33
3.2.1. Layout of pot experiments	33
3 2 2 Organic manuring	34

	Pag
3.2.3. Inorganic fertilization	35
3.2.4. Inoculation procedure	35
3.2.5. Sampling and determinations	35
3.2.5.1. Soil pH	36
3.2.5.2. Organic carbon	36
3.2.5.3. Total nitrogen	36
3.2.5.4. Phosphorus	36
3.2.5.5. Calcium carbonate	36
3.2.5.6. Electrical conductivity (EC)	37
3.2.5.7. Determination of CO ₂ evolution	37
3.2.5.8. Microbiological determinations	37
3.2.6. Statistical analysis	37
4. RESULTS	38
4.1. First pot experiment:	
(Calcareous Loamy-Sandy Soil, 1992-1993)	39
4.1.1. Microbial growth and activity in the rhizo-	
sphere of wheat plants cultivated in a	
calcareous loamy sandy soil as influenced	
by organic manuring, biofertilization and	
inorganic N-supplementation	39
4.1.1.1. Total microbes	39
4.1.1.2. Phosphate dissolvers	41
4.1.1.3. Cellulose decomposers	42
4.1.1.4. Associative N ₂ -fixers	45
4.1.1.5. CO ₂ evolution	47

	Page
4.1.2. Organic carbon and total nitrogen in cal-	
careous loamy sandy soil cultivated with	
wheat plants as influenced by organic man-	
uring, biofertilization and inorganic $$ N $$ -	
supplementation	50
4.1.2.1. Organic carbon	50
4.1.2.2. Total nitrogen	52
4.1.3. Growth, nutrient uptake and yield of wheat	
plants cultivated in a calcareous loamy	
sandy soil as influenced by organic manur-	
ing, biofertilization and inorganic N-	
supplementation	52
4.1.3.1. Plant height	52
4.1.3.2. Shoot dry weight	55
4.1.3.3. Root dry weight	57
4.1.3.4. Earing features	57
4.1.3.5. Phosphorus content of wheat grains	61
4.1.3.6. Nitrogen content of wheat grains	61
4.1.3.7. Wheat yield	61
4.2. Second pot experiment:	
(Sandy soil, 1993-1994)	65
4.2.1. Microbial growth and activity in the rhizo-	
sphere of wheat plants cultivated in a sandy	
soil as influenced by organic manuring, bio-	
fertilization and inorganic N-supplementation.	65
4.2.1.1. Total microbes	65

	Page
4.2.1.2. Phosphate dissolvers	67
4.2.1.3. Cellulose decomposers	67
4.2.1.4. Associative N_2 -fixers	70
4.2.1.5. CO ₂ -evolution	72
4.2.2. Organic carbon and total nitrogen in a	
sandy soil cultivated with wheat plants as	
influenced by organic manuring, biofertili-	
zation and inorganic N-supplementation	75
4.2.2.1. Organic carbon	75
4.2.2.2 Total nitrogen	75
4.2.3. Growth, nutrient uptake and yield of wheat	
plants cultivated in a sandy soil as influen-	
ced by organic manuring, biofertilization and	
inorganic N-supplementation	78
4.2.3.1. Plant height	78
4.2.3.2. Shoot dry weight	80
4.2.3.3. Root dry weight	80
4.2.3.4. Earing features	83
4.2.3.5. Phosphorus content of wheat grains	83
4.2.3.6. Ntrogen content of wheat grains	86
4.2.3.7. Wheat yield	86
5. DISCUSSION AND CONCLUSION	88
6. SUMMARY	95
7. REFERENCES	102
ADADTC CIMMADY	

LIST OF TABLES

Tabl	e	Page
(1)	Total microbial counts in rhizosphere of wheat	
	plants cultivated in calcareous loamy sandy soil	
	as affected by organic manuring, biofertilization	
	and inorganic N-supplementation	40
(2)	Counts of phosphate dissolvers in rhizosphere of	
	wheat plants cultivated in calcareous loamy-sandy	
	soil as affected by organic manuring, biofertili-	
	zation and inorganic N-supplementation	43
(3)	Counts of cellulose decomposers in rhizosphere of	
	wheat plants cultivated in calcareous loamy-sandy	
	soil as affected by organic manuring, biofertili-	
	zation and inorganic N-supplementation	44
(4)	Counts of azotobacters in rhizosphere of wheat	
	plants cultivated in calcareous loamy-sandy soil	
	as affected by organic manuring, biofertilization	
	and inorganic N-supplementation	46
(5)	Counts of azospirilla in rhizosphere of wheat	
	plants cultivated in calcareous loamy-sandy soil	
	as affected by organic manuring, biofertilization	
	and inorganic N-supplementation	48
(6)	Evolution of CO ₂ from calcareous loamy-sandy soil	
	cultivated with wheat plants as affected by orga-	
	nic N-supplementation	49

Tabl	e	Page
(7)	Organic carbon in calcareous loamy-sandy soil cuti-	
	vated with wheat plants as affected by organic man-	
	uring, biofertilization and inorganic N-supplemen-	
	tation	51
(8)	Total nitrogen in calcareous loamy-sandy soil cul-	
	tivated with wheat plants as affected by organic	
	manuring, biofertilization and inorganic N-sup-	
	plementation	53
(9)	Height of wheat plants cultivated in calcareous	
	loamy-sandy soil as affected by organic manuring,	
	biofertilization and inorganic N-supplementation.	54
(10)	Shoot dry weight of wheat plants cultivated in	
	calcareous loamy-sandy soil as affected by orga-	
	nic manuring, biofertilization and inorganic N-	
	supplementation	56
(11)	Root dry weight of wheat plants cultivated in a	
	calcareous loamy-sandy soil as affected by orga-	
	nic manuring, biofertilization and inorganic N-	
	supplementation	58
(12)	Characteristics of ears and grains of wheat plants	
	cultivated in a calcareous loamy-sandy soil as	
	affected by organic manuring, biofertilization and	
	inorganic N-supplementation	59
(13)	Phosphorus and nitrogen contents of the grains of	
	wheat plants cultivated in a calcareous loamy-sandy	
	soil after 161 days of sowing as affected by organi	С

Tabl	e	Page
	manuring, biofertilization and inorganic N-supple-	
	mentation	62
(14)	Yield of wheat plants cultivated in a calcareous	
	loamy-sandy soil as affected by organic manuring,	
	biofertilization and inorganic N-supplementation.	63
(15)	Total microbial counts in rhizosphere at wheat	
	plants cultivated in sandy soil as affected by	
	organic manuring, biofertilization and inorganic	
	N-supplementation	66
(16)	Counts of phosphate dissolvers in rhizosphere of	
	wheat plants cultivated in a sandy soil as affec-	
	ted by organic manuring, biofertilization and inor-	
	ganic N-supplementation	68
(17)	Counts of cellulose decomposers in rhizosphere of	
	wheat plants cultivated in a sandy soil as affected	
	by organic manuring, biofertilization and inorganic	
	N-supplementation	69
(18)	Counts of azotobacters in rhizosphere of wheat plants	S
	cultivated in a sandy soil as affected by organic mag	nur-
	ing, biofertilization and inorganic N-supplementation	n 71
(19)	Counts of azospirilla in rhizosphere of wheat plants	
	cultivated in a sandy soil as affected by organic ma	nur-
	ing, biofertilization and inorganic N-supplementatio	n 73
(20)	Evolution of CO2 from sandy soil cultivated with	
	wheat plants as affected by organic manuring, bio-	
	fertilization and inorganic N-supplementation	73

Table	e	Page
(21)	Organic carbon in sandy soil cultivated with wheat	
	plants as affected by organic manuring, bioferti-	
	lization and inorganic N-supplementation	76
(22)	Total nitrogen in sandy soil cultivated with wheat	
	plants as affected by organic manuring, biofertili-	
	zation and inorganic N-supplementation	77
(23)	Height of wheat plants cultivated in sandy soil as	
	affected by organic manuring, biofertilization and	
	inorganic N-supplementation	79
(24)	Shoot dry weight plants cultivated in a sandy soil	
	as affected by organic manuring, biofertilization	
	and inorganic N-supplementation	81
(25)	Root dry weight of wheat plants cultivated in sandy	
	soil as affected by organic manuring, biofertiliza-	
	tion and inorganic N-supplementation	82
(26)	Characteristics of ears and grains of wheat plants	
	cultivated in a sandy soil as affected by organic	
	manuring, biofertilization and inorganic N-supple-	
	mentation	8 4
(27)	Phosphorus and nitrogen contents of grains of	
	wheat plants cultivated in a sandy-soil as affec-	
	ted by organic manuring, biofertilization and	
	inorganic N-supplementation	85
(28)	Yield of wheat plants cultivated in sandy soil as	
	affected by organic manuring, biofertilization and	
	inorganic N-supplementation	87

1. INTRODUCTION

Ameliorating cultivation for maximizing plant production, particularly in desert soils, is considered to be of a prime importance, especially in developing countries, like Egypt, suffered from the shortage of cereals which represents the main food in.

Organic manuring of such sandy desert soils by the available organic manures (e.g., garbage and sheep manures) resulted in modifying their structure and water holding capacities. Moreover, addition of organic matter to soil, influences the solubility of certain soil minerals and makes them more readily availabl for plant and microbial growth, and increases the soil buffering properties. Organic matter in soil also serves as a soure of energy for the development of microorganisms and supplying them with certain essential nutrients required for their growth and activity (Waksman, 1952; Baver, 1963; Bear, 1965). Application of organic matter poor in its N-content (such as gargabe manure) needs a supplementation with nitrogen or some organic manures rich in sheep manure) to stimulate their N-content (such as decomposition and carbon mineralization of organic matter in soil (Alexander, 1977).

In the last few decads, a considerable amount of information has accumulated on the various association of diazotrophs and the roots of gramineae. Apparently, much of the attention has focussed on azotobacters and azospirilla as these

are mainly associated with cereal crops of great economic importance. Such attention offered some insights into the possibility of establishing these associations through seed inoculation (Dobereiner et al, 1976, Monib et al, 1979; El-Shehaby, 1981; Lakshmann, 1982; Okon, 1982, Ishac et al, 1984, a,b,c,d, Eid et al, 1984; Yassen, 1993; Faid, 1994).

Some organisms which possess the merit of solubilizing unavailable phosphates are of a major importance to soil fertility especially those of high pH level. Phosphate dissolvers were used as microbial inoculants (biofertilizers) for increasing soluble phosphates which are more readily absorbable by the growing plants (Hanafy, 1972; Yassen, 1994).

Therefore, the main target of present study is to evaluate the effect of garbage manure on the growth and yield of wheat plants cultivated in two different desert soils. Trials to improve its fertilizing properties by the application of sheep manure and/or biofertilization with associative N_2 -fixers and P-dissolver were carried out. Organic carbon, total nitrogen, microbial densities and activity in wheat rhizospheric soil were also determined periodically. These were carried out in the presence of different doses of inorganic N-fertilizer.