Ain Shams University Faculty of Engineering Electrical Engineering Department

AN EXPERT SYSTEM FOR FAULT DETECTION IN ELECTRIC NETWORKS

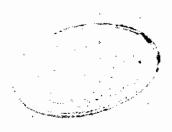
Ъу

Yasser Galal Moustafa B.Sc., Ain-Shams University, Egypt 1987

A thesis submitted in partial fulfillment of the requirements for the degree of master of science in electrical engineering

21.31042 Y.G

Under The Supervision


Dr. Mohamed M. Mansour Associate Prof. Ain Shams University 48 a a 3

Dr. Mohamed S. M. Rizk

Lecturer Ain Shams University Dr. Mohamed A. El-Hadidy,

Egyptian Electricity Authority

Cairo 1993

EXAMINATION COMMITTEE

EXAMINERS

SIGNATURE

M.Z. Ghonein

AHER

1- PROF. DR. : MOUTAZ ZAKARIA GHONEIM .

Prof. Faculty of Engineering, Al_Ashar University.

2- PROF. DR. : AHMED HASSAN ALI AMER .

Prof. Faculty of Engineering, Ain Shams University.

: MOHAMED MOHAMED S. MANSOUR . 3- DR.

> Associate Prof. Faculty of Engineering Ain Shams University. M. Manson

: MOHAMED A. EL_HADIDY . 4- DR.

Egyptian Electricity Authority,

STATEMENT

This dissertian is submitted to Ain Shams University for the degree of Master in Electrical Engineering .

The work included in this thesis was carried out by the author.

No part of this thesis has been submitted for a degree or qualification at other university or institution.

Date

: 30-H-1993

Signature : Jas

Name

: Yasser Galal Moustafa

ABSTRACT

In this thesis an Expert System is developed for faulted section estimation and protection scheme diagnosis. Detection and diagnosis are based on information from relays and circuit breakers. A short circuit calculation program is interfaced to the Expert System for strengthening the diagnosis capabilities. The knowledge, rules and heuristics of Expert System are written in PROLOG computer language while, the Electromagnetic Transient Program (EMTP) is used for short circuit calculations. The developed Expert System is tested through different case studies based on a study systems depicted from Egypt Power Network (EPN).

This system makes estimation even on the case of multiple faults as well as mal-function and false operation of relays and circuit breakers.

ACKNOWLEDGEMENTS

I am deeply indebted to my supervisor Dr. Mohamed M. Mansour for his continued guidance, brilliant instructions, signs, help, encouraging words and extremely moral support during the course of this study, he is a person who never hesistates to be consulted.

Also thanks to Dr. M.S.M. Rizk for his untiring efforts clear instructions which have improved the quality of this thesis immeasurably.

Very deep and sincere appreciation to protection expert

Dr. Mohamed A.El-Hadidy for his practical guidance, support

and advice which played a very vital role in the development

of this thesis.

I wish to thank ABB-ARAB Co. leaders, Eng. Kamal Gad the person who leads and supports any development process inside the company and Mr. Amged Moustafa for his fruitful help.

Special thanks should be addressed to Eng. Ismail H. Alla for his leadership support. Also sincere appreciation to Eng. Ali youssef Ali for his continous support and moral encouragement. I wish also express my appreciation to Eng. M. A. El-Haliem, M. El-Sawy, Eng. and Mr. John for their terrific help.

I wish also appreciate the great support and love of my father, the man who is behind this work. Helps and love given by my mother play a very important role in finalizing this thesis.

Finally, but certainly not the least important, i wish to appreciate the support of my brothers and friends.

CONTENTS

AB	STRACT .						· · ·		• • •		• •	٠	•	٧
AC	KNOWLEDG	EMENTS											•	vi
<u>Ch</u>	apter												D.	<u>ace</u>
I.	INTRODU	CTION												1
						-								
1.1	GENERA	AL												1
1.2	EXPER	SYSTE	м									<i>.</i>		1
1.3	ES AP	PLICATI	ONS IN	ELECT	RICA	L PC	WER	1						
	ENGIN	EERING			· · · ·									3
1	. 3. 1	ES in	Monitor	ing P	robl	ems	٠.							3
1	.3.1.1	Alarm	process	ing .							٠.			3
1	.3.2	ES in	Control	Prob	lems					. . .		<i>.</i>		4
1	.3.2.1	Voltag	e contr	ol							٠.			4
1	.3.2.2	Restor	ation c	ontro	1	 .			·					4
1	.3.3	ES in	Plannin	g Pro	blem	s.								4
1	.3.3.1	Load f	low pla	nning				• • •						4
1	.3.3.2	Unit o	ommitme	nt	• • • •			• • •						5
1	.3.4	ES in	Diagnos	is Pr	oble	ms .	• • • •							5
1	3.4.1	Fault	locatio	n and	pro	tec	tior	ı d:	Lag	nos	is			5
1.4	EXPER'	T SYSTE	M FOR F	AULT	SECT	ION	EST	IM	ITA	ON				
	AND P	ROTECTI	ON SCHE	ME DI	AGNO	SIS	• • •	• •		• • •				б
1	.4.1	Compar	ison Be	tweer	Maj	or 1	Ехре	ert	sy	ste	ms			
		For Fa	ult Dia	gnosi	s.,									9
4 =	THEFO	D. MED. 6	ONTRO	4 N/D -	SDAME	OM T		777 D.	~~.	m = -				_

1.5.1	ICPS Structure	9
1.5.2	ICPS Functional Requirements	13
1.5.3	De_centralised Approach To Fault Diagnosis	
	Expert System	13
1.5.3	1 Advantages of ICPS decentralized approach .	15
1.5.3	2 Decentralized approach constraints	15
1.6 TH	ESIS OBJECTIVES AND OUTLINES	16
II EXPE	RT SYSTEM	19
2.1 GE	VERAL	19
2.2 AR	CIFICIAL INTELLIGENCE	19
2.2.1	Natural Language Processing (NLP)	19
2.2.2	Computer Vision	21
2.2.3	Robotics	21
2.2.4	Expert System (ES)	22
2.3 CO	NVENTIONAL PROGRAMMING Vs. KNOWLEDGE	
EN	GINEERING	23
2.4 AR	CHITECTURE OF EXPERT SYSTEM	23
2.4.1	Knowledge Base	23
2.4.2	Inference Engine	27
2.4.2	.1 Forward chaining	27
2.4.2	.1 Backward chaining	27
2.4.3	Heuristics	28
2.5 KN	OWLEDGE ENGINEERING LANGUAGES	30
2.5.1	Shells	31

2.6 PROLO	G LANGUAGE	31
2.6.1	Facts and Rules	32
2.6.2	PROLOG basic program sections	33
2.6.3	PROLOG Mechanism	35
2.6.3.1	Patteren matching	36
2.6.3.2	Backtracking	36
III THE DE	VELOPED EXPERT SYSTEM FOR FAULT DIAGNOSIS	37
	·	
3.1 GENER	AL	37
3.2 DEVEL	OPED EXPERT SYSTEM	37
3.2.1	Data base 1: Facts On Network And	
	Protection System	38
3.2.2	Data base 2: Knowledge And Rules Of	
	Relays Operation	40
3.2.2.1	Relaying schemes	40
3.2.2.2	Rules of relay operation	42
3.2.3	Data base 3: Rules And Heuristics For	
	Estimation	43
3.2.3.1	Outlines of the inference method	44
3.3 CAPAE	BILITIES OF DEVELOPED APPROACH	58
IV TESTING	THE DEVELOPED EXPERT SYSTEM	59
4.1 GENER	RAL	59
4.2 GONF	GURATION OF STUDY SYSTEM	59
4.2.1	Protection Schemes Of The Study Network .	59
4.3 CASE	STUDIES	62

4.3.1	Case 1: bus_bar fault with correct	
	operation	62
4.3.2	Case 2: T.L. single fault with correct	
	operation	65
4.3.3	Case 3: bus-bar single fault with	
	mal-function	69
4.3.4	Case 4: line single fault with	
	mal-function	70
4.3.5	Case 5: two line faults simultaneously	75
4.3.6	Case 6: single line fault with	
	false-operation	77
4.3.7	Case 7: single line fault with large	
	black out area	79
4.3.8	Case 8: special fault with two possible	
	diagnosis	80
4.4 CHARA	ACHTERISTIC FEATURES OF DEVELOPED EXPERT	
SYST	IM .,	86
V INTERFAC	CING EXPERT SYSTEM WITH SHORT CIRCUIT	
CALCULAT	TION PROGRAM	87
5.1 GENE	RAL	87
5.2 ELECT	TROMAGNETIC TRANSIENT PROGRAM (EMTP)	87
5.3 EXPE	RT SYSTEM INTERFACED WITH EMTP	92
5.3.1	Expert System Modification	92
5.4 CONF.	IGURATION OF THE STUDY SYSTEM	95
5.4.1	Protection scheme Of The Study System	96

.

5.4.2 Parameters Of The Study System	98
5.5 CASE STUDY	98
5.6 CHARACHTERISTIC FEATURES OF THE MODIFIED	
EXPERT SYSTEM	108
VI CONCLUSIONS AND RECOMMENDATIONS	109
Appendix	Page
A. COMPLETE LIST OF DEVELOPED EXPERT SYSTEM	111
REFERENCES	

LIST OF FIGURES

<u>FIGURE</u>	<u>Pare</u>
1.1. A structure of knowledge based system ES	. 2
1.2. Integration of control & protection	
at substation	12
2.1. Branches of Artificial Intelligence	. 20
2.2. A structure of knowledge based system ES	25
2.3. Goal driven search technique	29
3.1. Concepts of knowledge base ES	
for fault diagnosis	38
3.2. Simple original network	38
3.3. Examples of relaying schemes	41
3.4. Flow diagram of inference process	45
3.5. Concept of classification of black out	
area	48
3.6. Hierarchy concept of inference process	49
3.7. Faulted section estimation process	52
4.1. Study network configuration	60
4.2. Case 1: bus_bar fault with correct operation	63
4.3. Case 1 program output	64
4.4. Case 2: T.L. fault with correct operation	66
4.5. Case 2 program output	67
4.6. Case 3: bus_bar fault with mal_function	71
4.7. Case 4: line fault with mal_function	72
4.8. Case 4 program output	73

4.9.	Case 5: two line faults simultaneously	76
4.10.	Case 6: line fault with false_operation	78
4.11.	Case 7: single fault with large black out	
	area	81
4.12.	Case 7 Program output	82
4.13.	Case 8: fault with two possible solutions	84
4.14.	Case 8 program output	85
5.1.	Dommel's representation of transmission	
	lines	91
5.2.	Study network configuration	97
5.3.	Study case	101
5.4.	Fault diagnosis adapted Expert System	
	output	106
5.5.	Fault diagnosis stand_alone Expert	
	Sustan out-ut	107

LIST OF TABLES

<u>Table</u>	Page	<u>e</u>
1.1. Applications of Expert Systems	for	
electrical power industy	7	
1.2 Comparison between major Expert	systems	
for fault diagnosis		
1.3 List of main ICPS functions		
2.1 Expert System Vs. conventional		
programming		
5.1 Current transformers ratio at d	ifferent	
sub-stations	99	
5.2 Distance relays setting Vs. act	ual	
values		3
5.3 Current Vs. time of definite ti	me over	
cumment melawa and senth fault	malac 10	'n