

Ain Shams University Faculty of Science

Department of Physics

STUDY OF PLASMA CHARACTERISTICS USING R.F ION SOURCE

Thesis

Submitted For The Partial Fulfillment Of Requirements For The Degree Of Master

In Plasma Physics

By Nadia Tanous El- Merai (B. Sc. 1991/Homs) 97298

SUPERVISORS

Prof. Dr. M.H.Talaat

Department of Physics Faculty of Science

Ain Shams University

Prof. Dr. F.W.Abdel Salam

Head of Accelerators and Ion Sources Dept.

Basic Nuclear Science Division Nuclear Research Center

Atomic Energy Authority

Dr. Adel G. Helal

Accelerators and Ion Sources Dept.
Basic Nuclear Science Division
Nuclear Research Center
Atomic Energy Authority

.

Cairo -1996

Ī

Ain Shams University Faculty of Science

Approval Sheet

- Student Name: Nadia Tanous El-Merai

- Thesis Title : Study of Plasma Characteristics Using R.F. Ion

Source.

- Degree : Master of Science (Physics).

Supervision Commitee

1. Prof. Dr. M. H. Talaat Faculty of Scince, Ain Shams University

2.Prof. Dr. F.W. Abdel Salam Head of Accelerators and Ion Sources

Dept. Atomic Energy Authority

Dr. Adel G. Helal Accelerators and Ion Sources Dept.

Atomic Energy Authority.

Higher Student

- Thesis Approval Date : / /199

- University Council Approval: / /199

- Faculty Council Approval : / /199

Acknowledgment

The author would like to express her deepest gratitude to Prof. Dr. M. H. Talaat, Physics Department, Faculty of Science, Ain Shams University, for his patient guidance and fruitful discussion during the course of study.

I wish to express my sincere appreciation to Prof. Dr. F. W. Abdel Salam, Head of Accelerators and Ion Sources Department, Basic Science Division, Nuclear Research center, Atomic Energy Authority, for suggesting and supervising the research programme of this work and for her valuable guidance, and illuminating discussions, which had great effect during the study.

Grateful appreciation and thanks to Dr. Adel G. Helal, for his continuous supervision, guidance, help in the analysis of the results, encouragement and interest.

The author would like to thank the Accelerators and Ion Sources Department for the helpful cooperation during the course of this work and for supplying the experimental facilities where this work has been done.

Abstract

Nadia Tanous EL - Merai. Study of plasma characteristics using R.F ion source.

The main interest of this work is to study the plasma parameters of axial constricted R.F ion source beside the optimization of the R.F. ion source.

The plasma has been generated by a 50 MC R.F., 200 watt oscillator which is inductively coupled to the plasma by R.F coil wound round the constricted Pyrex glass chamber. Argon and Nitrogen gases have been used as working gases in the pressure range 3-80 m torr.

Electric probe measurements showed that for Nitrogen gas at a pressure of 40 m torr., the plasma electron temperature increases linearly with the increase of R.F power without using extraction voltage in the ion source. The electron temperature was 7eV for 25 watt R.F power and 20 eV for 90 watt R.F power. At constant R.F power and gas pressure the plasma electron temperature increased with the increase of the extraction voltage.

The electron density has been estimated within the R.F discharge vessel for Nitrogen gas at a pressure of 40 m torr. The density varies between 4.5 x 10^{15} m⁻³ and 7.5 x 10^{15} m⁻³ at R.F power = 77 watt, for extraction voltage 500 and 1250 V respectively.

It has been found that the ion current density extracted increases with the increase of the electron density in the R.F discharge vessel.

The study of the extracted ion beam showed that the beam divergence decreases with the increase of the initial gas pressure which may be due to the recombination processes.

The increase of the ion beam divergence with perveance increase can be attributed to residual charge forces as well as the increase of the electron temperature. For Nitrogen gas at a pressure of 3 m torr, the perveance was found to be 0.243×10^{-8} A/V^{3/2} while for Argon gas at the same pressure it reached 0.122×10^{-8} A/V^{3/2} where the angular divergences were 10.3° and 7.2° respectively. For Nitrogen gas at a pressure of 25 m torr, the perveance was found to be 0.03×10^{-8} A/V^{3/2} while for Argon gas at the same pressure was 0.023×10^{-8} A/V^{3/2} where the angular divergences were 1.2° and 3.2° respectively.

The performance of the constricted R.F ion source showed that it can be used to draw higher current where the plasma temperature and density within the source play an important role.

Comparing the results obtained using our axial constricted R.F ion source with the conventional axial R.F source, it was found that the beam current increases by about 40% in case of our ion source.

Contents

Subject	page
Abstract	
Figures caption	
Nomenclature	
Introduction	1
Chapter (I): Review on previous work	4
1.1 Plasma diagnostics	4
1.2 Ion beam plasma sources	7
1.2.1 The PIG discharge sources	7
1.2.2 The Duoplasmatron ion sources	9
1.2.3 The Duopigatron	11
1.2.4 Mercury electron bombardment sources	12
1.2.5 Beam plasma sources	12
1.2.6 R.F ion sources	13
1.2.7 Magnetic-field-free sources	16
1.2.8 Sources of multicharged ions	16
1.2.9 Negative ion sources	16
1.2.10 Cold cathode ion sources	17
i. Cylindrical symmetry electrostati	c 17
ion sources ii. Spherical symmetry electrostatic	17
ii. Spherical symmetry electrostatic ion sources	17
iii. The plane symmetry electrostatic	20
charged particle oscillator ion	20
sources	
Chapter (II): Theoretical considerations	22
2.1 Probe theories	22
2.1.1 Langmuir single probe	22
2.1.2 The double probe	29
2.1.3 Emissive probe	31
2.2 Plasma characteristics	34
2.2.1 Debye shielding distance	34
2.2.2 Plasma temperature and density	35
2.2.3 Plasma oscillations	37

2.3	Princi	iples of ion extraction from the plasma	38
	2.3.1	The plasma boundary	39
	2.3.2	The ion current	40
2.4	Form	ation of beam from a plasma source	42
Chapter (II	II): Ex	perimental arrangements and operation	45
	рı	rocedure	
3.1	The h	igh vacuum system	45
3.2	The g	as supply system	48
3.3	The c	onstricted R.F ion source	48
3.4	The e	lectrical power supply feeding the ion	
	sourc	e plasma	50
3.5	The e	lectric probe circuit and conventional	
	meas	surements	53
Chapter (I	V): Exp	perimental results and discussion	56
4.1	Plasm	na characteristics	56
	4.1.1	Probe measurements	56
	4.1.2	Determination of the electron temperature	e 65
	4.1.3	Determination of the electron density	68
	4.14	Determination of the sheath thickness of	
		the plasma	70
4.2		nological and physical aspects of a	
	const	ricted R.F ion source	74
	4.2.1	Ion beam characteristics	74
	4.2.2	Effect of pressure on extraction	
		characteristics	78
	4.2.3	Change of the beam divergence with	
		perveance and pressure	78
4.3	Impro	evement of R.F ion source characteristics	89
	4.3.1	The beam current as a function of extract	ion
		potential at constant high R.F power	89
	4.3.2	The beam current as a function of gas	
		pressure	93
Chapter (V): Con	clusions	95
References			99
Arabic Sun	ımarv	,	

Figures caption

Subject		page
Fig. (1.1)	Penning discharge ion source	8
Fig. (1.2)	Duoplasmatron ion source	10
Fig. (1.3)	Axial extraction R.F ion source	14
Fig. (1.4)	Cylindrical symmetry electrostatic ion source	18
Fig. (1.5)	Schematic diagram of the spherical ion source	19
Fig. (1.6)	Schematic diagram of the ion source and its associated electrical circuit	21
Fig. (2.1)	Typical current-voltage characteristics for Probe	23
Fig. (2.2)	Schematic of natural logarithm of the probe current as a function of probe potential	30
Fig. (2.3)	Typical double probe characteristics	30
Fig. (2.4)	Emissive probes	33
Fig. (2.5)	Emissive probe characteristics	33
Fig. (2.6)	Typical plasmas in nature and the laboratory	36
Fig. (2.7)	Illustration of possible plasma boundary curvatures	41
Fig. (3.1)	The apparatus arrangement	46
Fig. (3.2)	Axial constricted R.F ion source	49
Fig. (3.3)	50MC, 200 watt R.F.oscillator	51
Fig. (3.4)	Power supply for the oscillator	52
Fig. (3.5)	Schematic diagram of the extraction power supply	52
Fig. (3.6)	Schematic diagram for electrical probe circuit	55
Fig. (4.1)	The probe current versus the probe voltage for different R.F powers at $V_{out} = 0$	58

Fig. (4.2)	The natural logarithmic probe current	59
	versus probe voltage for different R.F	
	power at V _{ext} =0	
Fig. (4.3)	The natural logarithmic probe current	60
	versus probe voltage for different R.F	
	power at V _{ext} =500 volt	
Fig. (4.4)	The natural logarithmic probe current	61
	versus probe voltage for different R.F	
	power at V _{ext} =1000 volt	
Fig. (4.5)	The natural logarithmic probe current	62
	versus probe voltage for different R.F	
	power at V _{ext} =1250 volt	
Fig. (4.6)	The natural logarithmic probe current	63
	versus Probe voltage for different	
	extraction voltages at R.F power = 90 watt	
Fig. (4.7)	The natural logarithmic probe current	64
	versus Probe voltage for different	
	extraction voltage at R.F power = 105 watt	
Fig. (4.8)	The relation between the electron	66
	temperature and extraction voltage at	
	constant values of R.F power	
Fig. (4.9)	The variation of electron temperature with	67
	R.F power at constant extraction voltages	
Fig. (4.10)	The variation of electron temperature with	69
	R.F power at V _{ext} =0	
Fig. (4.11)	The variation of electron density with ion	71
	current density at constant R.F power = 77	
	watt	
Fig. (4.12)	The variation of sheath thickness x with	73
- , ,	ion current density at various extraction	
	voltages	
Fig. (4.13)	Variation of ion beam current with	75
_ , ,	extraction voltage for different values of	
	R.F power at a pressure of 3 m torr. for	
	Nitrogen gas	

.