

Faculty of Science
Thysics Department

RADIATION DOSE MEASUREMENTS USING SOLID STATE DETECTORS

THESIS

Submitted for the degree of LDOCTOR OF PHILOSOPHY IN PHYSICS

52225

To

Faculty of Science Ain Shams University

By

Hoda Mohamed EL - Husseiny

B.Sc. in Physics

M. Sc. In Physics

1996

ACKNOWLEDGEMENT

The author would like to thank Prof .Dr. M. A. El- Sharkawi, the Head of Physics Department, Faculty of Science, Ain Shams University.

Sincere thanks and gratitude are to Prof. Dr. H.M. Eissa, Head of Radiation Measurements Department, National Institute for Standards, Pof. Dr. M.S. Abdel - Wahab, and Prof. Dr. S. A. El - Fiki, Physics Department, Faculty of Science, Ain Shams University for proposing and planning this investigation and whose continuous encouragements, valuable suggestions, capable supervision and reading throughout the manuscript have rendered the realization of this work to be possible.

Thanks are due to Ass. Prof. N. El - Enany, Physics Department, Faculty of Science, Ain Shams University for her continuous help and stimulated supervision.

Spicial thanks to Dr. S.A. Nooh, Physics Department, Faculty of Science, Ain Shams University for his valuable help.

I am also thankful to the staff of the Radiation Measurements Department, National Institute for Standards for continuous help, valuable advices and the facilities to carry out the experimental work,

CONTENTS

	Page
SUMMARY	
CHAPTER (1)	
INTRODUCTION	1
(1.1) General introduction	1
(1.2) Historical information of SSNTD ^s	3
(1.3) The aim of work	11
CHAPTER (2)	
INTERACTION OF RADIATION WITH MATTER	
AND TRACK FORMATION CRITERIA	12
(2.1) Interaction mechanism	12
(2.2) Radiation damage in solids	14
(2.3) Interaction of heavy ionized particle with	
SSNTD ^s	16
(2.3.1) Nuclear collision losses	19
(2.3.2) Electronic energy losses	21
(2.4) Track forming criteria	22
(2.4.1) Total rate of energy loss	23
(2.4.2) Primary ionization (J)	23
(2.4.3) Restricted energy loss (REL)	24
(2.4.4) Secondary electron energy loss	25

(2.4.5) Lineal event–density (LED)	25
(2.5) Range-energy relation	26
(2.6) Track etching: methodology and geometry	27
(2.6.1) Chemical etching	27
(2.6.2) Track etching recipes	27
(2.6.3) Track etching process	28
(2.6.4) Track etching geometry	33
(2.6.5) Determination of track parameter \boldsymbol{V}_{T}	34
(2.6.6) Critical angle and registration	
efficiency	3 9
(2.7) Optical properties	41
(2.7.1) Laws of light absorption	41
(2.7.2) Optical transition between bands	43
(2.7.3) Colour changes in polymer plastic	47
CHAPTER (3)	
EXPERIMENTAL TECHNIQUES	51
(3.1) Irradiation sources	51
(3.1.1) Irradiation sources of alpha particles	51
(3.1.2) Heavy ion source (28 Si)	52
(3.1.3) Gamma-radiation sources	52
(3.1.3.1) Cobalt source	52
(3.1.3.2) Caesium source	52

(3.2) Experimental apparatus	54
(3.2.1) Optical microscope	54
(3.2.2) Water bath	54
(3.2.3) Spectrophotometer	56
(3.3) The detector materials	56
CHAPTER (4)	
CHARACTERISTICS OF THE ETCHING AND	
OPTICAL TECHNIQUES	60
(4.1) Basic concepts and formula important for	
the treatment of errors	60
(4.2) Characteristics of the chemical etching	
technique	61
(4.2.1.) Track etching process	61
(4.2.2.) Optimum condition of used plastic	
detectors	62
(4.2.3.) The sensitivity of the $SSNTD^s$	65
(4.2.4.) Effect of etchant temperature on the	
etching parameters of etching process	71
(4.2.5.) Effect of etchant concentration on the	
etching parameters of etching process	79
(4.3) Effect of gamma-irradiation on the etching	
parameters	88
(4.4) Optical properties of SSNTD ^s	102

(4.4.1) Gamma–dose response of the optical	
transmittance	102
(4.4.2) Colour difference calculations	106
(4.4.3) Effect of irradiation on band tail and	
optical gap	110
CHAPTER (5)	
APPLICATION IN HIGH ENERGY FIELD USING	
SSNTD ^s	120
(5.1) Alpha particle dosimetry	120
(5.2) Alpha particle response of CR-39	
polycarbonated detector	126
(5.3) High energy charged particle registration in	
CR-39 polycarbonate detector	137
CONCLUSION	150
REFERENCES	153
INDEX	
ARABIC SUMMARY	

SUMMARY

Solid State Nuclear Track Detectors especially plastic detectors are being widely nowadays in a variety of application through the field of radiation dosimetry due to their several advantages; they are small in size, flexible in geometry, can be used for discriminating against high background of less ionizing radiation, they are integrating detectors, besides excellent properties of data analysis and high registration sensitivity.., etc.

Through this work, three types from SSNTD^S were used (CR-39 diglycol carbonate, LR-115 cellulose nitrate and Makrofol polycarbonate) for studying the characteristics of some alpha-sensitive solid state nuclear track detectors for dosimetric purposes covering both low and high energy alpha particles (wide range from 4.9 to 34 MeV). Also covering both low and high doses from gamma-rays, ranging from 10 Gy to 600 KGy, and for heavy ions such as ²⁸Si (670 MeV,).

The results can be summarised as follows:..

(1) Various treatment of chemical etching were performed and optimal conditions were found for each detector. Detection efficiency values and sensitivity parameters of the studied plastic foils were determined. The dependence of bulk etching rate (V_B) and track etching rate (V_T) on etching temperature and concentration of the used detectors were studied and found that V_B and V_T increaase with the temperature and concentration of the etchant, the activation energy of each detector is obtained and it is found to be $E_B = 0.89$, 0.36 and 0.26 eV and $E_T = 0.77$, 0.64 and 0.39 eV for CR-39, LR-115 and Makrofol respectively, also the exponent values $n_B = 1.21$, 0.30 and 0.50 while n_T 1,3.66 and 0.73 for the same detectors respectively.

- (2) The effect of pre-and post-gamma irradiation on the etching parameters for the used detectors were studied. The results indicate that the bulk and track etching rate were increased with gamma dose (ranging from 10 Gy to 100 KGy) in both the experimental schedules (pre-and post-gamma irradiation). Also the response ratio [(VBT/VBO) and (VTD/VTO)] of the three detectors increases with increasing gamma-doses in both pre-and post-irradiation techniques.
- (3) The induced changes in colour and optical absorption of CR-39 and Makrofol using high intensity gamma rays have been investigated. The spectral transmission values of unirradiated and irradiated detectors (gamma dose from 50 to 600 KGy) were measured using

spectrophotometric technique. The optical energy gap, the width of the band tail, the tristimulus values and the colour difference of these detectors were calculated. It is found that Makrofol detector is more response to colour change by gamma-irradiation than CR-39 and can be used as gamma dosimeter from 200-500 KGy with limited sensitivity. Also they are not destroyed by these high doses which may be considered advantagous especially in the field of sterilization.

- (4) The alpha-particles response which is characteristic of polycarbonate CR-39 has been investigated. The mean track diameter as a function of alpha energy in the range from 5.1 to 34 MeV was examined. The mean track diameter or size of the tracks are found to be energy dependent which decreases as alpha energy increases with a trend at about 14 MeV alpha energy. With regard to the spectroscopy of alpha from track radii, it was stated that the discrimination of lower alpha energies shows better results than the high energies for the present etching condition.
- (5) High energy of heavy ions ²⁸Si ions of 670 MeV, registration in CR-39 detector have been investigated. Experimental results were obtained interms of frequency distribution of

the track diameter, track density and bulk etching rate. A dependence of the mean track diameter on energy was found. The bulk etching rate found to be $20.8\mu m/hr$, the increase of bulk etching rate may be attributed to increase of the incident energy of the particles. Results incidated that it is possible to produce etchable tracks of ²⁸Si in this energy range in CR-39. We also report the etching characteristics of these tracks in CR-39 detector.