

Environmental pollutant measurements and natural radioactivity assessment of Egyptian clay using different techniques

Thesis
Submitted in the partial Fulfillment
For M. Sc. Degree in Physics
To
Physics Department
Faculty of Women for Art, Science and Education,
Ain Shams University

By

Samah Mohammed Watany Mohammed

B. Sc. in Physics, 2006

Supervisors

Prof. Dr.Samia Mohammed el Bahi

Prof. of Nuclear Physics
Faculty of Women for Arts, Science
and Education
Ain Shams University

Prof. Dr. Nadia Walley El-Dine

Prof. of Nuclear Physics Faculty of Women for Arts, Science and Education Ain Shams University

Dr.Soad Ibrahim

Assistant Prof. of Spectroscopy
Faculty for Women, Arts, Science
and Education
Ain Shams University

A Thesis for M.Sc in Physics Samah Mohammed Watany Mohamed

Title of thesis Environmental pollutant measurements and natural radioactivity assessment of Egyptian clay using different techniques

Thesis Supervisors

Prof. Dr.Samia Mohammed el Bahi

Prof. of Nuclear Physics
Faculty of Women for Arts, Science
and Education
Ain Shams University

Prof. Dr. Nadia Walley El-Dine

Prof. of Nuclear Physics Faculty of Women for Arts, Science and Education Ain Shams University

Dr.Soad Ibrahim

Assistant Prof. of Spectroscopy
Faculty of Women for Arts, Science
and Education
Ain Shams University

Date of Research: / /2014 Date of Approval: / /2014

Approval Stamp:

Approval of Faculty Council: / /2014

Approval of University Council: / / 2014

Student name: Samah Mohammed Watany Mohammed

Scientific degree: Bachelor Science in Physics

Department: Physics Department

Faculty: Faculty of Women, for Arts, Science and

Education

University: Ain Shams University

Date of graduate: 2006

Date of granted: M.Sc in Physics 2014.

Acknowledgments

First and above all, I praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully.

Wording is not enough to express my sincere respect and gratitude to my supervisor, **Prof. Dr. Nadia Walley El-Dine**, Professor of Nuclear Physics, Ain Shams University, Faculty of Women for Arts, Science and Education for her kindness, guidance and advice throughout this work and encourage me to go ahead with my work.

I wish to express my deepest appreciation to **Prof. Dr. Samia Mohammed el Bahi,** Professor of Nuclear Physics, Ain Shams University, Faculty of Women for Arts, Science and Education for her dedication and interest and assistance during this work.

I would like to express my heartily thanks to **Dr. Soad Ibrahim**, Assistant Professor of Spectroscopy, Ain Shams University, Faculty of Women for Arts, Science and Education for her invaluable advices, continuous constructive discussions God have mercy and forgive her and makes the graveyard paradise.

Special thanks to **Prof. Dr. Sawsan Hamed**, Assistant Professor of Spectroscopy for her supervision and support during the course of this study.

Acknowledgements are also extended to

- **1- Dr. Aisha Soliman,** Head of Physics Department, Faculty of Women for Arts, Science and Education for her kindness
- **2- Members** of Nuclear laboratory Physics Department, Faculty of Women for Arts, Science and Education, for their helpful and useful assistance.
- **3- All My family** provided me with useful and helpful assistance. Without their care and consideration, this work would likely not have matured.

Finally, I want to express my best thanks to all those helped me directly or indirectly to finish this work and every one reads it.

Abstrac_{*}

Natural radioactivity is wide spread in the earth's environment, it exists in soil, plants, water and air. Environmental natural gamma radiation is formed from terrestrial and cosmic source.

In the present study, seventeen samples of Egyptian clay were analysed using gamma-ray spectrometry based on coaxial HpGe detector shielded by cylinders of lead, copper and cadmium. The analysis of data is completed by computerized multichannel analyzer with high level software programs to determine the activity concentrations of ²³⁸U, ²²⁶Ra, ²³²Th and ⁴⁰K. Ten of these samples were analysed using flame atomic absorption spectrometer (FAAS) to determine the concentrations of heavy metals (Cu, Cd, Fe, Mg, Mn, Ni and Zn).

Clay, consisting fine grained materials, is an interesting materials and can be used in a variety of different fields. The knowledge of the radioactivity levels and heavy metals concentrations in these commonly used materials was of great importance in the assessment of possible radiological risks to human health. The purpose of this study was to determine the natural radioactivity due to ²³⁸U, ²³²Th and ⁴⁰K and heavy metals concentration (Cu, Cd, Fe, Mg, Mn, Ni and Zn) in some Egyptian clay samples using gamma ray spectroscopy and flame atomic absorption spectrometer respectively. The activity concentration of ²²⁶Ra, ²³⁸U, ²³²Th and ⁴⁰K of all clay samples ranged from (8.44 to 203.09), (5.93 to 85.26), (2.88 to 99.98) and (8.72 to 428.92) Bg/kg respectively. It was found that the concentration of heavy metals lies between 0.1 ppm for Mn to 68.8 ppm for Fe in clay samples. Radium equivalent activities and various hazard indices were also calculated to assess the radiation hazard. The radium equivalent activities Ra_{ea} ranged from (32.78 to 354.49) Bq/kg was lower than the permissible limit 370 Bq/kg. The calculated values of external hazard index H_{ex} ranged from (0.088 to 0.95) and the representative level index I , ranged from (0.24 to 2.43). The absorbed gamma dose rate (D_R) nGy/h was determined.

The results show that the values of the absorbed dose rate were slightly high in: Sample (1) Aswanly clay where it helps in treatment. Sample (4) Kaolin was used in the component of ceramic; it was used with small quantity which had no significant hazard on this production .Sample (6) Grog clay was used as high temperature isolation in fire furnace which didn't effect on the human health. Samples (8, 10, 11, 14, and 15) were used in cooking, hazard effects were found on the human health then care must be taken. Sample (16) red brick used in building materials, sample (17) was used for decoration they have indirect effect on the human body. In case of $H_{\rm in}$ we showed that samples (6,8) have values more than 1 we recommended to make good ventilation in case of storing these products to avoid the accumulation of radon gas which have a harmful effect on human health. From these results we recommended using other material for cooking instead of clay.

It was found that the concentration of heavy metals lies between 0.1 ppm for Mn to 68.8 ppm for Fe in clay samples. Also the sensitivity of the determined heavy metals was calculated and it was found to be 0.0062 ppm for Mg to 0.133 ppm for Fe. The results show that the concentration of U, Th and K for most samples are within the values accepted as normal and all heavy metals have low concentration except The concentration of Fe is high in all samples due to Fe is from the constituent of the earth crust.

Therefore Egyptian clay samples can be used for some kinds of fabricated goods such as red brick for building materials, vase for decoration and ceramic industry. Egyptian clays have an important economic effect due to their low cost.

CONTENTS

Acknowledgment
Abstract
Contents
List of Figures
VII
List of Tables
IX

Chapter I Introduction and Literature Review

Con	tents Pa	age
1.1)	Introduction	
1.2)	Natural Radioactivity	Z
1.2	.1) Primordial radionuclides	2
	1.2.1.1) Series Radionuclide	3
	1.2.1.2) Non- Series Radionuclide	8
1.2	2) Cosmogenic	10
	1.2.2.1) Primary Cosmic Ray	10
	1.2.2.2) Secondary Cosmic Ray	11
1.2.	3) Man- made Sources of Radiation	12
	1.2.3.1) Medical sources	12
	1.2.3.2) Nuclear Weapons	12
	1.2.3.3) Nuclear Power	12
	1.2.3.4) Consumer products	13
1.3)	Clay	14
1.4)	Γypes of clay	15
1.5)	Clay uses	19

Contents	Page
1.6) Literature Review for gamma-ray spectroscopy	20
1.7) Literature Review for atomic absorption spectroscopy	26
1.8) Aim and Scope of the Work	31

Chapter II Theoretical calculations and Analytical Technique

Contents	Page
2.1) Interaction of Gamma-Ray with Mater	33
2.1) Photoelectric Effect	33
2. 2) Compton Scattering	34
2. 3) Pair Production	37
2.2) Radiation Quantity and Units	38
2.2.1) Radioactivity Units	38
2.2.2) Absorbed Dose Unit	38
2.2.3) Radiation Exposure Unit	39
2.2.4) Dose Equivalent	39
2.2.5) Radiation Energy Units	40
2.3) Radioactive Equilibrium	40
2.3.1) Secular Equilibrium	41
2.3.2) Transient Equilibrium	41
2.3.3) No Equilibrium	42
2.4) Theoretical Calculation for Natural Radiation	42

Contents	Page
2.4.1) Activity Concentration (A)	42
2.4.2) Gamma Absorbed Dose Rate (D _R)	43
2.4.3) Radium Equivalent Dose (Ra _{eq})	43
2.4.4) External and Internal Hazard Index	44
2.4.5) Radiation Level Index (I γ)	44
2.5) Semiconductor Detectors`	45
2.5.1) Silicon Detector	47
2.5.2) Germanium Detectors	49
2.6) Theoretical Calculation for atomic absorption spectrometry	54

Chapter III Experimental Techniques and Calibration of Spectrometer

Contents	Page
3.1) Description of the System	55
3.1.1) Detector shielding	56
3.1.2) Preamplifier	58
3.1.3) The Spectroscopy amplifier	59
3.1.4) The oscilloscope	60
3.1.5) High voltage power supply	60
3.1.6) The pulse-height multichannel analyzer (MCA)	61
3.2) The Calibration	63
3.2.1) Energy Calibration of the HPGe Spectrometer	64

Contents	Page
3.2.2) Energy Resolution	65
3.2.3) Efficiency calibration of HpGe detector	67
3.3) Detection limits	71
3.4) Flame atomic absorption spectrometer	72
3.4.1) Light source	74
3.4.2) Hollow cathode lamps	74
3.4.3) Atomic absorption Atomizer and burner system	75
3.4.4) Monochromator and light measurement	77

Chapter IV Results and Discussion

Contents Page	ge
4.1) Sampling and Sample preparation for gamma - ray spectrometer7	78
4.2) Results of hyper pure germanium detector	79
4.3) Results and Discussion of Flame atomic absorption spectrometry9	92
4.3.1) Sample preparation9	92
4.3.2) Preparation of standard solution	92
4.3.3) Analytical procedures	93
4.3.3.1) Operating conditions	93
4.3.3.2) Analytical calibration curve	94
4.3.4) Sensitivity	96
Conclusion	ſ
References I	(I
Arabic Summary	i

List of Figures

Figures	Page
Fig. (1-1): the decay scheme of ²³⁸ U	3
Fig. (1-2): Uranium silvery gray metallic; corrodes to a spalling black oxide	
coat in air	
Fig. (1-3): the decay scheme of ²³² Th	
Fig. (1-4): the decay scheme of ²³⁵ U	7
Fig. (1.5): Cosmic Rays Collisions	10
Fig. (1-6): Sources of Radiation Exposure to Population in USA	13
Fig. (1.7): Types of clay	16
Fig. (2-1): Photoelectric absorption	34
Fig. (2-2): The Compton scattering of a photon	35
Fig. (2-3): Pair Production	37
Fig. (2-4): Configuration of a planar HPGe detector	51
Fig. (2-5): Configuration of a Coaxial HPGe detector	53
Fig. (3-1): Component of Dewar for cooling nitrogen	56
Fig. (3-2): Shielding of Detector	57
Fig. (3 -3): Hyper pure germanium detector well type shield	58
Fig. (3 -4): Schematic diagram of the high-purity germanium detector syste	em63
Fig. (3 -5): Energy Channel Calibration Curve	65
Fig. (3 -6): The relation between the shaping time (RC) and resolution	
For Co-60	67
Fig. (3-7): Relative efficiency curve of Ra-226 and its daughter gamma	
energy lines	69
Fig. (3-8): Absolute efficiency curve of Ra-226 and its daughter energy lines	s70

Figures	Page
Fig. (3-9): Flame atomic absorption spectrometer	72
Fig. (3-10): Show the atomic absorption process	73
Fig. (3-11): Schematic digram of an atomic absorption experiment	73
Fig. (3-12): Hollow cathode lamp	74
Fig. (3-13): Atomic Absorption burner system	75
Fig. (3-14): Optical diagram for monochromator	77
Fig. (4-1): gamma-ray spectrum of the Egyptian clay sample no. (1) Aswanly clay.	80
Fig. (4-2): The concentration of 238 U, 232 Th and 40 K in (Bq/kg)	83
Fig. (4-3): The values of radium equivalent in (Bq/kg), dose rate in (nGy/h) and eff dose rate in (mSvy ⁻¹)	
Fig. (4-4): The values of external hazard and internal hazard	87
$Fig.\ (4\text{-}5)\text{: }Correlation\ between\ (Thorium, Uranium)\ and\ (Thorium, Potassium)$	89
Fig. (4-6): Correlation between (Potassium, Uranium) and (Radium, Uranium)	90
Fig. (4-7): Analytical calibration curve for Zn& Cd &Ni element	94
Fig. (4-8): Analytical calibration curve for Mn & Cu element	94

List of Tables

Tables Pag	e
Table (1.1), number of natural and manmade radiation sources that present	
Table (1.1): number of natural and manmade radiation sources that present	
Some exposure to the public14	
Table (3.1): Gamma-ray energies of the standard radioactive Sources used	
for energy calibration64	
Table (3.2): changing of the resolution value with the RC value the shaping	
Time	
Table (3.3): Relative efficiency of gamma rays from Ra-226 radionuclides	
With its short- lived gamma emitting daughters6	8
Table (3.4): Absolute efficiency value of Ra-226 and its daughter gamma	
Energy lines70	0
Table (3.5): The lowest limits of detection (LLD) for the radionuclides of 40 K, 238 U	
and ²³² Th7	1
Table (4.1): Activity isotopes for the studied samples in (Bq/Kg)	31
Table (4.2): The concentration of $^{238}\mathrm{U},^{232}\mathrm{Th}$ and $^{40}\mathrm{K}$ in (Bq/kg)	2
Table (4.3): The values of radium equivalent in (Bq/kg), dose rate in (nGy/h), Externa	ıl
Hazard, internal hazard, radioactivity level index and effective dose8	5
Table (4.4): Comparison of activity concentrations and radium equivalents (Bq/Kg) red brick clay and ball clay in different countries	
Table (4.5): Activity concentration of ²³⁸ U series, ²³² Th series in (ppm),	
⁴⁰ K in (%) and (²³² Th/ ²³⁸ U)9	1
Table (4.6): operating conditions for elements measured by (FAAS)9	3
Table (4.7): Concentrations in (ppm) of elements measured by (FAAS)9	15
Table (4.8): the value of Sensitivity for elements measured by (FAAS)	7

Introduction and Literature Review

1.1) Introduction

Our world is radioactive and has been since it was created. Over 60 radionuclides (radioactive elements) can be found in nature, and they can be placed in three general categories: Primordial formed before the creation of the Earth, Cosmogenic formed as a result of cosmic ray interactions, Human produced formed due to human actions (minor amounts compared to natural) .

Natural radioactivity is common in the rocks, soil that makes up our planet, water, oceans, building materials and homes. There is nowhere on Earth that you cannot find natural radioactivity they are even found in us.

Radioactive elements are often called radioactive isotopes or radionuclides found in the environment, such as uranium, thorium and potassium and any of their decay products, such as radium and radon. These natural radioactive elements are present in very low concentrations in earth's crust and are brought to the surface through human activities such as oil and gas exploration or mining and through natural processes like leakage of radon gas to the atmosphere or through dissolution in ground water.

NORM is an acronym for Naturally Occurring Radioactive Material, which potentially includes all radioactive elements found in the environment. However, the term is used more specifically for all naturally occurring radioactive materials where human activities have increased the potential for exposure compared with the unaltered situation. Concentrations of actual radionuclides may or may not have been increased; if they have, the term Technologically-Enhanced (TENORM) may be used.

The acronym TENORM, or technologically enhanced NORM, is often used to refer to those materials where the amount of