
EFFECT OF γ- IRRADIATION ON SOME MEMBERS OF ACETOBACTERACEAE

A Thesis
Submitted In Partial Fulfillment For The
Requirements For The Master Degree of Science
In
Microbiology

By
Abeer Emam Mohamed Zakaria
(B.Sc. Ain ShamsUniversity)
1987

589.95 ···

44565

Botany Department Women's College Ain Shams University 1992

EFFECT OF γ- IRRADIATION ON SOME MEMBERS OF ACETOBACTERACEAE

A Thesis Submitted In Partial Fulfillment For The Requirements For The Master Degree of Science In Microbiology

under the supervision of

Prof. Dr. Mohamed Ibrahim H. Mahmoud

Prof. of Microbiology

Botany Department

Women's College

Ain Shams University

Dr. Soad S. Abdel-aal

Assist. prof. of Microbiology National Center for Radiation Research & Technology Dr. Hassan Gebreel

Lecturer of Microbiology
Faculty of Science
Ain Shams University

Botany Department
Women's College
Ain Shams University
1992

Theoretical Courses

- 1- Enzymology.
- 2- Microbial biochemistry.
- 3- Methodology.
- 4- Biostatistics.
- 5- Nitrogen fixation.
- 6- Applied microbiology.
- 7- Scientific english.
- 8- Microbial ecology.

The above post graduate cources have been attended and passed successfully on (1989), as a partial fulfillment for the requirements of master degree of science, by **Abeer Emam Mohamed Zakaria**.

ACKNOWLEDGEMENT

I would like to present my profound gratitude to Dr. Mohamed Ibrahim H. Mahmoud, Professor of Microbiology, Botany Department, Women's College, Ain Shams University for his kind supervision, valuable advices and informations, continuous encouragement and unlimited help in preparing this thesis.

I would like also to express my great thanks and my gratefulness to Dr. Soad S. Abdel-aal, Assistant professor of Microbiology, National Center for Radiation Research and Technology (NCRRT), for her continuous guidance, great encouragement and supervising the work.

My sincere thanks to Dr, Hassan Gebreel, Lecturer of Microbiology, Botany Department, Faculty of Science, Ain Shams University for his valuable help, criticism and kind supervision

I would like also to thank the members of Microbiology Department and Pharmacology Department, Faculty of pharmacy, Zagazig University for their valuable help in an important practical part of this thesis.

Thanks are also due to my colleagues in Botany Department, Women's College, Ain Shams University and in Microbiology Department and Chemistry Department, National Center for Radiation Research and Technology (NCRRT) for their cooperation and sincere help.

Abeer Emam

To My Roots
My Mother and Father

To the Delicate Flower
My Sole Sister

To the Other Half of Me
The Doctor of Chemistry

CONTENTS

	Page
INI	RODUCTION1-2
LIT	TERATURE REVIEW3-22
I.	Characterization of Acetic Acid Bacteria3
	Industrial importance of acetic acid bacteria5
	Acetic acid bacteria and brewing spoilage6
П.	Types of Radiation
m.	Radiation Resistance of Microorganisms10
	Types of dose response curves
	Effect of dose rate on the radiosensetivity of microorganisms
IV.	Ionizing Radiation as a Mutagenic Agent12
	Molecular mechanisms of mutation
	(A) Microlesions13
	(B) Macrolesions14
	Mutation and fermentation technology
v.	Screening for new Antibiotics
	Strain improvement
	Antibiotic production by acetic acid bacteria
	Factors affecting the antibiotic production by microorganisms 19
MA	TERIALS AND METHODS23-33
1-	Media
2-	Isolation and purification of test organisms

3- Determination of the antimicrobial activities of the test organisms 2	18
4- Effect of aeration on the antimicrobial activity of test organisms 2	29
5- Purification of the antimicrobial substance	19
6- Irradiation of Acetobacter liquefaciens and Gluconobacter oxydans 3	1
RESULTS AND DISCUSSION34-10	0
Identification of the bacterial isolates	14
Antagonestic properties of Acetobacter and Gluconobacter isolates4	4
Test of antimicrobial activity at different phases of growth	50
Purification of the antimicrobial substance produced by Gluconobacter oxydans	30
Comparison between the activity of the antimicrobial substance and that o	
Effect of gamma radiation on Acetobacter liquefaciens and Gluconobacter oxydans	34
Selection of irradiated isolates of Acetobacter liquefaciens and Gluconobact oxydans	
Comparative studies for wild isolates and the selected irradiated ones	79
I Comparative studies for Acetobacter liquefaciens and its selected irradiated isolates	79
II Comparative studies for <i>Gluconobacter oxydans</i> and its selected irradiated isolates	36
Factors affecting the antibiotic production by Acetobacter liquefaciens and	31

A- Nutritional Requi	rements91
B- Temperature	95
C- pH-value	98
D- Aeration	98
SUMMARY	101-108
ABSTRACT	104
REFERENCES	105-121
ARARIC SIMMARY	7

TABLE INDEX

	1 age
Table (1):	Identification and sources of bacterial isolates
Table (2):	Biochemical characters of Acetobacter and Glucono- bacter
Table (3):	Antagonestic properties of test isolates of Acetobacter and Gluconobacter
Table (4):	Antagonestic properties of Acetobacter liquefaciens and Gluconobacter oxydans
Table (5):	Productivity of antimicrobial agent at different growth phases of Acetobacter liquefaciens at 28°C with shaking at 20 rpm
Table (6):	Productivity of antimicrobial agent at different growth phases of <i>Gluconobacter oxydans</i> at 28°C with shaking at 20 rpm
Table (7):	Comparison between the activity of the antimicrobial substance produced by Gluconobacter oxydans and that of ampicillin
Table (8):	Effect of dose rate 0.058 Gy/sec of gamma radiation on the radiation response of Acetobacter liquefaciens 65
Table (9):	Effect of dose rate 0.16 Gy/sec of gamma radiation on the radiation response of Acetobacter liquefaciens
Table (10) :	Effect of dose rate 0.058 Gy/sec of gamma radiation on the radiation response of Gluconobacter oxydans

		Pag
Table (11):	Effect of dose rate 0.16 Gy/sec of gamma radiation on	
	the radiation response of Gluconobacter oxydans	70
Table (12) :	Effect of dose rate on the D_{10} -value of $Acetobacter\ li$ -	
	quefaciens and Gluconobacter oxydans	74
Table (13) :	Coding of irradiated isolates of Acetobacter liquefaci-	
	ens selected at 0.058 Gy/sec and 0.16 Gy/sec	77
Table (14) :	Coding of irradiated isolates of Gluconobacter oxy-	
	dans selected at 0.058Gy/sec and 0.16Gy/sec	78
Table (15) :	Comparison between the main biochemical reactions	
	of the wild type and the selected irradiated isolates	
	of Acetobacter liquefaciens and Gluconobacter oxy-	
	dans at dose rate 0.058 Gy/sec	80
Table (16) :	Abilities of wild isolates as well as the selected irra-	
	diated ones at 0.058 Gy/sec, of Acetobacter liquefaci-	
	ens and Gluconobacter oxydans, to utilize different	
	carbon sources	81
Table (17) :	Abilities of the wild type as well as the selected irra-	
	diated ones at 0.058 Gy/sec, of Acetobacter liquefaci-	
	ens and Gluconobacter oxydans, to utilize different	
	amino-acids	82
Table (18):	Comparison between the antagonestic properties of	
	the wild type of Acetobacter liquefaciens and its irra-	
	diated isolates selected at dose rate 0.058 Gy/sec and	
	0.16 Gy/sec using agar discs method and Staph. au-	
	rous as a test organism	84

FIGURE INDEX

	Page
Fig. (1):	Antagonestic properties of test isolates of Acetobacter liquefaciens and Gluconobacter oxydans
Fig. (2):	Growth curve of Acetobacter liquefaciens at 28°C with shaking at 20 rpm
Fig. (3):	Productivity of antimicrobial agent at different growth phases of Acetobacter liquefaciens and Gluconobacter oxydans
Fig. (4):	Changes in pH of the growth medium of Acetobacter liquefaciens and Gluconobacter oxydans at different growth phases
Fig. (5):	Growth curve of Gluconobacter oxydans at 28°C with shaking at 20 rpm
Fig. (6):	Comparison between the antimicrobial activity of the test substance produced by <i>Gluconobacter oxydans</i> and that of ampicillin
Fig. (7):	Dose response curve of Acetobacter liquefaciens at the dose rate 0.058 Gy/sec
Fig. (8):	Dose response curve of Acetobacter liquefaciens at the dose rate 0.16 Gy/sec
Fig. (9):	Dose response curve of <i>Gluconobacter oxydans</i> at the dose rate 0.058 Gy/sec.

		Page
Fig. (10):	Dose response curve of Gluconobacter oxydans at the	
	dose rate 0.16 Gy/sec	72
Fig. (11):	Effect of carbon-source on the antimicrobial activity	
	of Acetobacter and Gluconobacter isolates as well as	
	the mutant 7A	93
Fig. (12):	Effect of nitrogen-source on the antimicrobial activi-	
	ty of Acetobacter and Gluconobacter isolates as well	
	as the mutant 7A	94
Fig. (13):	Effect of incubation temperature on the antimicrobi-	
	al activity of Acetobacter and Gluconobacter isolates	
	as well as the mutant 7A	97
Fig. (14):	Effect of different pH-values of the medium on the	
	antimicrobial activity of Acetobacter and Glucono-	
	bacter isolates as well as the mutant 7A	100

PLATE INDEX

	Page
Plate (1) :	Pure colonies of Acetobacter liquefaciens and Glucono- bacter oxydans
Plate (2):	Production of brown pigment by Acetobacter liquefa- ciens and Gluconobacter oxydans
Plate (3):	Electron photomicrograph of cells of Acetobacter liquefaciens
Plate (4):	Gluconobacter oxydans growing for 14 days on (GYC) agar plate showing crystals of calcium gluconate
Plate (5):	Electron photomicrograph of cells of Gluconobacter oxydans
Plate (6):	Some antagonestic properties of Gluconobacter oxy- dans
Plate (7):	Antimicrobial activities, of selected irradiated isolates as well as the wild ones using agar discs method and Staph. aureus as a test organism, for (a) Acetobacter liquefaciens and (b) Gluconobacter oxydans