ELECTROENCEPHALOGRAPHIC CHANGES IN INSULIN DEPENDENT DIABETES MELLITUS IN CHILDREN

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF MASTER DEGREE IN PEDIATRICS

PRESENTED BY

MAGDY MOUHAMED ABD-ALLA MB, BCh

UNDER THE SUPERVISION OF

PROF. DR. MONA ABDEL KADER SALEM
PROF. OF PEDIATRICS
FACULTY OF MEDICINE
AIN SHAMS UNIVERSITY

PROF. DR. MONA ABDEL HAMID RAAFAT

ASS PROF. OF NEUROLOGY FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

DR. AZZA ABDEL GAWAD TANTAWI

LECTURER OF PEDIATRICS FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1993

T0:

MY PARENTS, MY WIFE MY DAUGHTER

ACKNOWLEDGEMENT

Words cannot express deep thanks and gratitude to PROFESSOR DR. MONA ABDEL KADER SALEM Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for giving me the priviledge of working under her supervision, for her continuous encouragment, her patience and kind guidance throughout the whole work.

I am also indebted to PROFESSOR DR MONA ABDEL HAMID RAAFAT Assistant Professor of Neurology, Faculty of Medicine, Ain Shams University who was kind enough to devote me much of her time and valuable advice, experience and guidance

I am also grateful to PROFESSOR DR MOHSSEN SALEH EL ALFY, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams, University for his great help and cooperation in the accomplishment of this work.

My deep thanks to DR AZZA ABDEL GAWAD TANTAM Lecturer of Pediatrics, Faculty of Medicine Ain Shams, University, for her great patience and sincere help throughout the whole work.

My cordial thanks to DR FOUAD FETOUH ATIA, Lecturer of Biochemistry, Faculty of Pharmacy, Al Azhar University for his great help and cooperation.

My deep thanks to Dr. SAFINAZ A.EL-HABASHY Lecturer of Pediatrics, Faculty of Medicine Ain Shams University, for giving the idea of the thesis

Last, but by no means least, I wish to thank my colleagues in the Diabetes Clinic of the Children's Hospital, Ain Shams University and my dear patients and their families, without their help this work would not have been possible.

LIST OF CONTENTS

	Page			
(1) LIST OF TABLES.	i			
(2) LIST OF FIGURES.	ii			
(3) LIST OF ABBREVIATIONS.	iii			
(4) INTRODUCTION AND AIM OF THE WORK.	1			
(5) REVIEW OF LITERATURE.				
Diabetes mellitus.	4			
Prevalence of IDDM.	4			
Classification of DM.	6			
Etiology, genetics and pathogenesis of IDDM.	11			
Diagnosis of DM.				
Evaluation of diabetic control in IDDM.	17			
Complications of DM.				
Prognosis of DM.	37			
Malnutrition related diabetes mellitus.				
Electroencephalogram.	44			
EEG changes in IDDM.	58			
SUBJECTS AND METHODS	63			
RESULTS.	67			
DISCUSSION.				
SUMMARY AND CONCLUSION.				
RECOMMENDATIONS.				
REFERENCES.				
ARABIC SUMMARY				

LIST OF TABLES

Table.N°	Title	Page
TABLE (1)	Classification of DM.	7
TABLE (2)	Clinical characteristics of the two major	8
	types of DM.	
TABLE (3)	Conditions and syndromes associated with DM	10
	and impaired glucose tolerance.	
TABLE (4)	Relation between sex and EEG findings in the	68
	control group.	
TABLE (5)	Relation between age and EEG findings in	69
	control group.	
TABLE (6)	Relation between EEG findings and blood	70
	glucose glycosylated hemoglobín, serum	
	sodiam, potassium, osmolality in the control	
	group.	
TABLE (7)	Comparison between the prevalence of EEG	72
	changes in the patients and controls.	
TABLE (8)	Different EEG findings in the patients in	73
	comparison to the controls.	
TABLE (9)	Relation between sex and EEG findings in the	75
	patients.	
TABLE (10)	Relation between age and EEG findings in the	76
	patients.	

TABLE	(11)	Relation between the duration of diabetes	77
		melltius and EEG. findings.	
TABLE	(12)	Relation between the age of onset of diabetes	78
		melltius and EEG findings	
TABLE	(13)	Relation between the EEG findings and blood	82
		glucose, HBAIC, serum sodium, potassium,	
		osmolality in the group of patients.	
TABLE	(14)	Relation between EEG changes and	83
		hypoglycemic attacks in group of patients.	
TABLE	(15)	Relation between EEG changes and severity	84
		of hypoglycemic attacks in group of	
		patients.	
TABLE	(16)	Relation between EEG changes and number of	85
		previous major hypoglycemic attacks in	
		group of patients.	
TABLE	(17)	Relation between EEG pattern ,stable and	86
		labile course of diabetes.	
TABLE	(18)	Relation between EEG changes and DKA in	87
		group of patients.	

LIST OF FIGURES

Fig. N ^O		Title	Page
FIGURE	(1)	1020 Electrode placement system.	46
FIGURE	(2)	Normal EEG and its analysis.	52
FIGURE	(3)	Normal human EEG	53
	A	Normal record with eyes closed	
	В	Normal record with eyes opened	
FIGURE	(4)	Normal EEG record	88
FIGURE	(5)	Generalized theta dysrythmia	89
FIGURE	(6)	Epileptiform activity	90

LIST OF ABBREVIATIONS

DK Diabetic Ketosis

DKA Diabetic Ketoacidosis

DM Diabetes Mellitus

EEG Electroencephalogram

FCPD Fibrocalculous pancreatic diabetes

HBAIC Glycosylated Hemoglobin

HZ Hertz

IDDM Insulin dependent diabetes mellitus

JPTS Juvenile pancreatitis tropical syndrome

MRDM Malnutrition related diabetes mellitus

PDPD Protein deficient pancreatic diabetes

S.D Standerd deviation

S.E Standerd error

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION

Diabetes mellitus is one of the commonest endocrinal diseases in childhood. It is classified into three forms, type I diabetes, type II diabetes and secondary diabetes. The basic cause of type I diabetes in childhood is the sharply diminished secretion of insulin.

(Genuth, 1983).

Although basal insulin concentrations in plasma may be normal in newly diagnosed patients insulin production in response to a variety of potent secretagogues is blunted and usually disappears over a period of months, to years rarely exceeding 5 years. (Sperling, 1988).

Type I diabetes is characterized by increased frequency of complications (Brittle diabetes). Among the important complications are the neurological complications. (Feingold, 1984).

EEG abnormalities constitute one of the neurological complications which are suspected to occur during the course of type I diabetes mellitus. The hypoglycemia and ketoacidosis which occur in the type I diabetes are the

major factors incriminated in the occurrence of the EEG changes. These EEG changes may vary between simple transient forms to severe and permanent EEG sequelae.

(Lerman et al., 1977).

AIM OF THE WORK

The aim of this work is to study the electroencephalographic changes induced in insulin dependent diabetes mellitus and its correlation to the course of the disease as well as to the frequency and severity of episodes of diabetic ketoacidosis and hypoglycemic attacks.