AIN SHAMS UNIVERSITY -FACULTY OF ENGINEERING

A STUDY OF THE EFFECT OF INTERACTION BETWEEN A LIQUID FUEL
SPRAY AND THE SURROUNDING AIR ON COMBUSTION CHARACTERISTICS

BY

ENGINEER ESSAM RODEL AZIZ FRHMY HAGAS

THESIS

Submitted in partial fulfilment of the requirement for the degree of

MASTER OF SCIENCE

IN MECHANICAL ENGINEERING

621-4023

0

4025

27814

UNDER THE SUPERVISION OF

Prof.A.A.ELEHWANY

Prof. of Heat Engines Faculty of Engineering Ain Shams University Dr.Y.H.ELBANHAWY

Ass. pmf. of Heat Engines Faculty of Engineering Ain Shams University

1988

Signature

Prof. F.M.EL MAHALLAWY
Prof. of Heat Engines
Faculty Of Engineering
Cairo University

F. El Marketh

Prof.A.S.GAD EL MAWLA
Head of Energy and
Automotive Eng. Dept.
Prof. of Heat Engines
Faculty Of Engineering
Ain Shams University

a Called Stables

Prof. A. A. EL EHWANY

Prof. Of Heat Engines

Faculty Of Engineering

Ain Shams University

Date: / / 1988

Ť

PREFACE

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was carried out by the author in the Energy and Automotive Department , Faculty of Engineering , Ain Shams University from December 1981 to September 1988.

No part of this thesis has been submitted for a degree at any other university.

1

ABSTRACT

In the present work , measurements of local flame properties are performed within disc / swirl stabilized kerosene spray flame in a cylindrical water cooled combustion internal diameter chamber 0.21 m The flames corresponded to different values of air swirl (10°, 35°) and stabilizer disc diameter (0.07, 0.08 and 0.09 m). The six flames operated under lean mixture conditions with an input equivalence ratio of 0.68 .

The results indicated that , for both high and low swirl , the increase of disc diameter from 0.07 to 0.09 m causes an improvement in the fuel spray and turbulent mixing of the fuel and air with a resulting higher tendency for flame stabilization. This is coupled with a higher rate of chemical reactions and energy release rate at downstream regions of the flames . The increase of disc diameter , for both high and low swirl , decreases the values of heat flux to the combustor wall at first then increases the values of heat flux , with larger values , for the largest disc diameter .

The increase in the degree of combustion air swirl produced similar effect on the flame properties as those observed with the increase in stabilized disc diameter. However, the extent of these effects is much larger with the

increase in air swirl. The increase of air swirl increases the amount of fuel vapour and CO within the central region of the flame and this caused an increase in the flame length. Also the increase of air swirl increases the measured values of heat flux to the combustor wall.

ACKNOWLEDGEMENT

I hereby wish to thank all who rendered assistance and guidance during my study.

First, I wish to acknowledge with gratitude the guidance, suggestions and encouragement provided by my supervisors Prof. A.A.El Ehwany and Dr. Y.H. El Banhawy.

I wish also to express my thanks to all people who helped me throughout these years at the Heat Engines laboratory of the Energy and Automobile Engineering Dept., Faculty of Engineering, Ain Shams University.

I wish to extend my thanks to my college Eng. A.A. El Mekkawy who contributed to the design and manufacture of the present experimental test rig.

I feel grateful to Eng. A. Ibrahim for his limitless practical help.

Finally , my appreciation deepest gratitude are extended to my family for their support and encouragement .

CONTENTS

Contents		Page
PREFACE		i
ABSTRACT		ii
ACKNOWLEDGEMENT		iv
CONTENTS		v
LIST OF FIGURES		viii
LIST OF TABLES		хi
NOMENCLATURE		xii
CHAPTER 1 INTRODU	CTION	1
CHAPTER 2 LITERAT	URE REVIEW	5
CHAPTER 3 EQUIPME	NT AND EXPERIMENTAL PROGRAMME	17
3.1 Ex	perimental Set Up	17
3.	1.1 Test section	17
3.	1.2 The burner	18
3.	1.3 Air supply system	18
3.	1.4 Fuel supply system	19
3.	1.5 Water supply system	19
3.2 The	e Measuring Instrumentations	20
3.	2.1 Temperature measurements	20
3.:	2.2 Concentration measurements	21
3	2 3 Heat transfer measurements	າາ

	3.3	3 Experi	mental Pr	ogramme		23
CHAPTER	4 PRI	ESENTATIO	N AND DIS	CUSSION OF EXP	ERIMENTAL	
	RES	SULTS				36
	4.1	l Experi	mental Re	sults		37
	4.2	2 Effect	Of Stabi	lizer Disc Dia	meter With	
		Low C	combustion	Air Swirl Fla	mes	38
		4.2.1	Aerodyna	mic features o	f the	
			present	flow geometry		39
		4.2.2	Basic fl	ame structure		40
		4.2.3	Discussi	on of experimen	ntal	
			results			43
			4.2.3.1	Temperature and	nd	
				concentration	results	43
			4.2.3.2	Heat transfer	results	48
	4.3	Effect	Of Stabi	lizer Disc Diam	meter With	
		High C	ombustion	Air Swirl Flan	mes	49
		4.3.1	Basic fl	ame structure		49
		4.3.2	Discussi	on of experimen	ntal	
			results			51
			4.3.2.1	Temperature an	nd	
				concentration	results	51
			4.3.2.2	Heat transfer	results	53
	4.4	Effect	Of Combu	stion Air Swir	L	54
	4.5	Furthe	r Discuss	ion		58
		4.5.1	Flame st	ructure		58

4.5.2 Effect of stabilizer disc		
diameter	60	
4.5.3 Effect of air swirl	62	
CHAPTER 5 CONCLUSIONS AND RECOMMENDATIONS FOR FUT	URE	
WORK	103	
5.1 Conclusion	103	
5.2 Recommendations For Future Work	105	
REFERENCES		
APPENDIX I CALCULATION OF AIR FLOW RATE	115	
APPENDIX II FUEL NOZZLE CALIBRATION CURVE	118	
APPENDIX III THERMOCOUPLE CALIBRATION CURVE	119	
APPENDIX IV HEAT FLUX CALCULATION	120	
APPENDEX V CENTER LINE TEMPEDATURE AND		

CONCENTRATION DISTRIBUTION

127

vii

viii

LIST OF FIGURES

		pa	ige
Fia	3.1	Experimental set up	28
_	3.2	Test section	29
	3.3	Details of burner	30
_	3.4	Stabiluzer disc	31
-	3.5	Swirl blade	31
_	3.6	Air preheater	32
-	3.7	Thermocouple proble	33
_	3.8	Gas sampling proble	34
Fig	3.9	Schematic diagram for the sampling system	35
Fig	4.1	Radial profiles of gas temperature , RUN NO.1	65
Fig	4.2	Radial profiles of gas temperature , RUN NO.2	66
Fig	4.3	Radial profiles of gas temperature , RUN NO.3	67
Fig	4.4	Radial profiles of CO concentration, RUN No.1	68
Fig	4.5	Radial profiles of CO concentration, RUN NO.2	69
Fig	4.6	Radial profiles of CO concentration, RUN NO.3	70
Fig	4.7	Radial profiles of CO ₂ concentration, RUN NO.1	71
Fig	4.8	Radial profiles of CO ₂ concentration, RUN NO.2	72
Fig	4.9	Radial profiles of CO ₂ concentration, RUN NO.3	73
Fig	4.10	Axial distribtion of heat flux, RUNS NO. 1,2	74
		and 3	
Fig	4.11	Teperature contour maps, RUNS NO. 1,2 and 3	75

Fig 4.12	CO concentration contour maps , RUNS NO. 1,2	
	and 3	76
Fig 4.13	CO ₂ concentration contour maps, RUNS NO. 1,2	
	and 3	77
Fig 4.14	Radial profiles of gas temperature , RUN NO.4	78
Fig 4.15	Radial profiles of gas temperature , RUN NO.5	79
Fig 4.16	Radial profiles of gas temperature ,RUN NO.6	80
Fig 4.17	Radial profiles of CO concentrations, RUN NO.4	81
Fig 4.18	Radial profiles of CO concentrations, RUN NO.5	82
Fig 4.19	Radial profiles of CO concentrations, RUN NO.6	83
FIG 4.20	Radial profiles of ${\rm CO}_2$ concentrations, RUN NO.4	84
FIG 4.21	Radial profiles of CO ₂ concentrations, RUN NO.5	85
FIG 4.22	Radial profiles of CO ₂ concentrations, RUN NO.6	86
FIG 4.23	Axial distribution of heat flux, RUNS NO. 4,	
	5 and 6	87
FIG 4.24	Teperature contour maps, RUNS NO. 4,5 and 6	88
FIG 4.25	CO concentration contour maps ,	
	RUNS NO. 4,5 and 6	89
FIG 4.26	CO ₂ concentration contour maps ,	
	RUNS NO. 4,5 and 6	90
FIG 4.27	Aerodynamic features of the present geometry	91
FIG 4.28	Basic flame structure, RUNS NO. 1 , 2 and 3	92
FIG 4.29	Basic flame structure, RUNS NO. 4 , 5 and 6	93
FIG 4.30	Teperature contour maps ,	
	RUNS NO. 1 and NO. 4	94
FIG 4.31	CO concentration contour maps ,	
	RUNS NO. 1 and NO. 4	95

		x	
FIG	4.32	CO, concentration contour maps ,	
		RUNS NO. 1 and NO. 4	96
FIG	4.33	Teperature contour maps ,	30
		RUNS NO. 2 and 5	97
FTG	4.34	CO concentration contour maps ,	,
110		RUNS NO. 2 and 5	98
FTG	4 35		30
113	4.55	CO ₂ concentration contour maps , RUNS NO. 2 and 5	0.0
PT.C	1 26		99
rig	4.50	Teperature contour maps ,	
DEG		RUNS NO. 3 and 6	100
FIG	4.3/	CO concentration contour maps ,	
		RUNS NO. 3 and 6	101
FIG	4.38	co ₂ concentration contour maps ,	
		RUNS NO. 3 and 6	102
FIG	I.1	Velocity distribution curve	117
FIG	II.1	Fuel nozzle calibration curve	118
FIG	III.1	Thermocoule calibration curve ,	
		Platinum , Platinum - 13 % Rhodium	119
FIG	V.1	Temperature distribution along the center	
		line of the combustor , RUNS NO. 1,2,3,4,	
		5 and 6	127
FIG	V.2	CO concentration distribution along the	
		center line of the combustor , RUNS NO.	
		1,2,3,4,5 and 6	128
FIG	V.3	CO ₂ concentration distribution along the	
		center line of the combustor , RUNS NO.	

129

1,2,3,4,5 and 6

7

LIST OF TABLES

			page
Table	2.1	Summary of spray flames studies	12
Table	3.1	Operating conditions	25
Table	3.2	Specifications of fuel	26
Table	I.1	Calculation of air flow rate	115
Table	IV.1	Calculation of heat flux , RUN NO. 1	121
Table	IV.2	Calculation of heat flux , RUN NO. 2	122
Table	IV.3	Calculation of heat flux , RUN No. 3	123
Table	IV.4	Calculation of heat flux , RUN NO. 4	124
Table	IV.5	Calculation of heat flux , RUN NO. 5	125
Table	IV.6	Calculation of heat flux . RUN No. 6	126

W

NOMENCLATURE

A	Area	m ²
cw	Specific heat	KJ/Kg ^O
D	Disc diameter	m
Dp	Droplet diameter	um
đ	Combustion chamber internal diameter	m
$\mathtt{d}_{\mathbf{w}}$	Wire diameter	นฑ
FN	Flow number	
ID	Inner diameter	mm
1	Axial distance of the segment	m .
m'	Air flow rate	Kg/sec
$^{\mathrm{m}}_{\mathrm{w}}$	Water flow rate	Kg/sec
N	Viscosity	c.stokes
$^{N}_{p}$	Number of droplet	
OD	Outer diameter	mm
P	Inlet air pressure	atm
p	Pressure differential across the nozzle Ib/	sq.inch
Q	Heat flux	Kw
q	Fuel volume flow rate Imperial ga	allon /hı
$q_{\mathbf{a}}$	Air flow rate	m ³ /sec
R_{o}	Combustion chamber internal radius (d / 2)	m
r	Radial distance	
S	Swirl number	
s	Swirl angle	
SMD	Sauter mean droplet diameter	um
T	Gas temperature	°c
To	Inlet air temperature	°K
$\mathtt{T}_{\mathbf{w}}$	Water temperature rise	°c