

EVALUATION OF THE BIOLOGICAL ACTIVITY OF CERTAIN PLANT EXTRACTS ON THE BLACK CUTWORM AGROTIS IPSILON (Hfn.)

(NOCTUIDAE, LEPIDOPTERA);

A Thesis

Submitted in Partial Fulfillment of the Requirements for the Award of the Degree of

Master of Science

64227

+ 95 م S · M

Ву

SOAD MOHAMED OSMAN

B.Sc. (Entomology - Chemistry)

Department of Entomology
Faculty of Science
Ain Shams University
Cairo

1996

CONTENTS

Subject	Page
ABSTRACT	1
INTRODUCTION	2
REVIEW OF LITERATURE	3
I Insecticidal activity of naturally occurring plant	3
extracts II. Effect of certain plant extracts on biological	9
III. Isolation and identification of chemical constituents of plant extracts	17
MATERIALS AND METHODS	19
1. Laboratory rearing of A. ipsilon 11. Plant extracts A. Preparation of the extracts B. Methods of application 1. Treatment of larvae 11. Screening for broactive components against A. globar in different extracts of black pepper and Hungarian chamomile A. Sterois and triterpenes B. Tannins C. Glycosides 1. Phenolic glycosides 2. Cyanophore glycosides 3. Anthracuinone glycosides 4. Cardio glycosides	19 19 19 20 20 20 21 21 21 21 21 21 21 21 21 21 21 21 21
RESULTS	2
Part 1 Egg treatments N. The effect of black pepper (hippor nigrum) extracts of egg viability, and duration of hatched larvae and pupils.	2

Subject	Page
1- Treatment of 24-hr-old eggs	24
a. Egg viability	24
b. Larval duration	24 24
c. Pupal duration	24
2. Treatment of 72-hr-old eggs	25
a. Egg viability	25 25
b. Larval duration	25 25
c. Pupal duration	25 25
B. The effect of Hungarian chamomile (Matricaria	23
chamber (in charge of the charge) extracts on egg viability and on duration of	
hatched larvae and pupae of the black cutworm, A.	
1- Treatment of 24-hr-old eggs	25
a. Egg viability	25
b. Larval duration	25
c. Pupal duration	26
7. Treatment of 72 hards	27
 Treatment of 72-hr-old eggs on: Egg viability 	27
b. Larval duration	27
c. Pupal duration	27
	27
Part II. Larval treatment	20
A. The effect of black pepper (<i>Piper nigrum</i>) extract on	29
the mortality and weight changes of treated larges of the	
older ediworm A. Ipsilon.	20
1. Petroleum ether extract	29
2. Chloroform extract	29 34
3. Acetone extract	3 4 39
4. Ethyl alcohol extract	45
5. Water extract	50
B. The effect of Hungarian chamomile (Matricaria	50
chamble of the mortality and on weight	
changes of freated larvae of the black cutworm 4	
ipsnon.	55
Petroleum ether extract	55
2. Chloroform extract	60
3. Acetone extract	65
4. Ethyl alcohol extract	70
5. Water extract	75
	13

11

Ш

Subject	Page
Part III. Colourimetric analysis of phytochemicals in	
different extracts of black pepper and Hungarian chamomil	80
A. Black pepper components	80
1. Sterols and Triterpenes	80
2. Tannins	80
3. Glycosides	80
B. Hungarian chamomile components	82
1. Sterols and Triterpenes	82
2. Tannins	82
3. Glycosides	82
DISCUSSION AND CONCLUSIONS	84
I. Effect of plant extracts on egg hatchability	84
II Effect of plant extracts on the mortality and on the weight of larvae III. Colourimetric analysis of phytochemicals in different extracts of black pepper and Hungarian chamomil	85
	87
SUMMARY	88
LITERATURE CITED	91
ADADIC SHMMARV	

Table		Page
9	Mortality and weight of <i>A. ipsilon</i> larvae (1st-6th instars) treated with 10, 20 and 40% of Hungarian chamomile extract in chloroform	62
10	Mortality and weight of A. ipsilon larvae (1st-6th instars) treated with 10, 20 and 40% of Hungarian chamomile extract in acetone	67
11	Mortality and weight of <i>A. ipsilon</i> larvae (1st-6th instars) treated with 10, 20 and 40% of Hungarian chamomile extract in ethyl alcohol	. 72
12	Mortality and weight of <i>A. ipsilon</i> larvae (1st-6th instars) treated with 10, 20 and 40% of Hungarian chamomile extract in water	77
13	Coluorimetric analysis of the phytochemicals in different extracts of black pepper (fruits)	81
14	Colourimetric analysis of the phytochemicals in different extracts of Hungarian chamomile (flowers)	83

LIST OF FIGURES

Fig.		Page
1	Malformation of pupae (A) and adults (B) of A. <i>ipsilon</i> due to egg treatment with black pepper extracts	28
2	Percent mortality of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in petroleum ether	32
3	Percent reduction in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in petroleum	
4	ether Percent mortality of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in chloroform	33 37
5	Percent reduction in weight of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in chloroform	. 38
6	rercent mortality of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in acetone	42
7	Percent reduction in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in acetone	43
8	Malformation of pupae (A) and adults (B) of A. ipsilon due to larvae treatment with black pepper extracts	44
9	Percent mortality of <i>A. ipsilon</i> larvae treated with three concentrations, 10, 20 and 40% of black pepper in ethyl alcohol	44

Fig.		Page
10	Percent reduction in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in ethyl alcohol	50
11	Percent mortality of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in water	53
12	Percent reduction in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of black pepper extract in water	54
13	Percent mortality of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in petroleum ether	58
14	Percent change in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in petroleum ether	59
15	Percent mortality of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in chloroform	63
16	Percent change in weight of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in chloroform	64
17	Percent mortality of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in acetone	68

Ш

Fig.		Page
18	Percent change in weight of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in acetone	69
19	Percent mortality of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in ethyl alcohol	73
20	Percent change in weight of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in ethyl alcohol	74
21	Percent mortality of <i>A. ipsilon</i> larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in water	78
22	Percent change in weight of A. ipsilon larvae (1st to 6th instars) treated with three concentrations, 10, 20 and 40% of Hungarian chamomile extract in water	79

INTRODUCTION

Plant extracts effective against insect pests have been recently recognized as a substitute for chemical insecticides hazardous to man, animals and environment.

In this respect, wild weeds, ornamentals, medicinals and other plants were always considered as a source of such substitutes. Besides safety to the environment, many of these plant chemicals are not effective against predators and parasites which play an important part in integrated pest management. Therefore, the present study was designed to evaluate different extracts of black pepper (*Piper nigrum*) and Hungarian chamomile (*Matricaria chamomil*) against one of the most serious pests in Egypt, the black cut worm, *Agrotis ipsilon* which attacks many field crops and vegetables causing serious damage to the seedling.

Aim of the present work:

The present study aimed at revealing the following points:

- 1- Effect of black pepper and Hungarian chamomile on: egg viability, larval-pupal duration, mortality and weight of larvae.
- 2- The relative efficacy of five solvents of different polarities namely, petroleum ether, chloroform, acetone, alcohol and water used for extraction.
- 3- The major chemical components of the plant extracts as determined by colourimetric analysis.

REVIEW OF LITERATURE

I. Insecticidal Activity of Naturally Occurring Plant Extracts:

Hartzell et al. (1943), found that extracts of black pepper, Piper nigrum (L.) were highly toxic to rice weevil, Sitophilus oryzae (L.) when applied on the surface of wheat grains.

Atwal and Pajni (1964), bioassayed each of 10% alcohol, petroleum ether and water extracts of *Melia azedarach* against larvae of *Pieris brassica* L. The data showed that water (5.26%) and petroleum ether (3.82%) do not contain appreciable insecticidal fraction. However, alcohol extracts gave (78.3%) mortality of larvae within 40 hrs.

Gayer and Shazly (1968), tested the acetone extracts toxicity of the whole plant of *Cichorium pumilum* Jacq., disk flower of *Matricaria chamomilla* (L.), seeds of *Nigella* sp. and seeds of *Datura stramonium* to larvae of *Culex pipiens*. LC₅₀ values of these plant extracts were 45.31±1.04, 28.84±1.36, 105.3±1.09 and 182.0±1.03 ppm, respectively.

Granich et al. (1974), found that the Gymnena sylvester which contains gymnemic acid and the triterpene saponins in leaves acts as feeding deterrent of the larvae of Spodoptera eridania.

Hosozawa et al. (1974), bioassayed the chemical resistant factors in plants against *Spodoptera litura* (Fab.) larvae. Antifeeding diterpenes were found in 13 species of plants belonging to family Verbenaceae.

Russell et al. (1976), reported that dry leaves powder of Libocedrus bidwillii were toxic to larvae of Musca domestica L. The most active toxin is the bignan B-peltatin-A-methyl ether and a concentration of 100 ppm added to the diet caused 98% mortality.

Naraia and Satapathy (1977), reported that leaves, stem and root extracts from *Vinca rosea* showed antifungal activity against *Helminthosporium nodulosum*, *Sclerotium rofsii*, *Pestalotia* sp., *Fusarium oxysporum*, *Calletrichum* sp. and *Aspergillus niger*. The leaves extract was generally the most effective one.

Ahmed et al. (1978), bioassayed the acetone extract of Melia azedarach, Aegla marmilos, Artemisia arborea, Clerodenderon splendens and C. inerma for the antifeeding properties against Spodoptera littoralis (Boisd.) larvae in comparison with Du-Ter and Plictran. The five extracts gave significant feeding deterrence especially, C. inerma which was constantly good deterrent to the 3rd and older instars. Also, the best solvent was ethanol for C. inerma and benzene for C. splendens.

Su (1978), studied acetone extracts of 3 known varieties and one unidentified variety of black pepper *Piper nigrum* L. for their toxicity to adults of 3 species of stored-product insects. Indian malaber extracts had highest oral and contact activity to *Sitophilus oryzae* (L.) and the highest contact toxicity to *Callosobruchus maculatus* (F.) and *Lasioderma serricone* (F.).

Teotia and Tewari (1978), tested the contact and residual toxicity of films of ether and petroleum ether extracts of drupes and dharak, *Melia azedarach* and rhizomes of sweet flag, *Acorus calamus* to adults of *Sitotroga cerealella* (Oliv.), malathion was used for comparison. Malathion was the most toxic followed by dharak petroleum ether extract, sweet flat petroleum ether extract, dharak ether extracts and sweet flat ether extract in last order. The previous plant extracts were 0.001873, 0.001842 and 0.001776 times as toxic as malathion, respectively.