AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING ELECTRONIC ENGINEERING AND COMMUNICATIONS DEPARTMENT

Performance Analysis Of MSK System In Inteference Environments

A THESIS SUBMITTED IN PARTIAL FULLFILMENT
OF THE M.SC DEGREE IN
ELECTRONICS AND COMMUNICATIONS
ENGINEERING

621.38224 R. A

BY

ENG. ROSHDY ALY ABDEL MAKSOUD

Supervised By

Prof. Dr. Hadia El-Henawy Electronic Engineering And Communications Department Ain Shams University Dr. Reffat H. El-Zanfally National Telecommunications Institute (N T I)

50123

CAIRO 1993

EXAMINER COMMITTEE

SIGNATURE

Prof.Doctor : Salura hossien El-Ramlly.

(Salura El Ramby)

Ain shams university,

Electronic & Commun. Department.

Prof.Doctor : Had ia El- Hennawy.

(H. El Hennewy)

Ain shams university,

Electronic & Commun. Department.

Prof.Doctor: Mostaffa Abdel- Kadder.

(M.Bdh.D)

Millitary technical college,

Communication department.

Date : 1/2/ 1993.

Ain shams university,

Engineering collage,

Electronic & Commun. Department.

PERSONNEL INFORMATION

NAME: ROSHDY ALY ABDEL-MAKSOUD.

BIRTHDAY & PLACE: 8 / 8 / 1952 MENOFIAA.

EDUCATION:

1- B.Sc

2- Diploma in Operatioal Research.

PREVIOUS EXPERINCES:

- 1- REPAIR & MAINTENANCE OF RADIO EQUIPMENTS.
- 2- REPAIR & MAINTENANCE OF WIRE COMMUNICATION EQUIPMENT
- 3- INSTALLATION & MAINTENANCE OF ELECTRONIC SWITCHES.
- 4- ADDMENSTRATION SWITCH NETWORKS.

CURRENT JOB : COLLENEL ENGINEER IN ARMED FORCES.

RESPONSOL OF THE ADDMENSTRATION OF SWITCH NETWORK

OF THE STRATEGIC COMMUNICATION NETWORK (SCN).

STUDENT NAME : ROSHDY ALY ABDEL-MAKSOUD.

SIGNATURE :

ACKNOWLEDGMENT

All gratitude is due to ALLAH.

I wish to express my sincere appreciation and gratitude to prof Dr. HADIA EL-HENAWEE because of her guidance, helpful suggestions, valuable comments and continuous encouragement during all phases of the work.

I owe a real and unlimited depth of gratitude and appreciation to Dr. REFAAT H. EL-ZANFALY for following up this work, his patience, excellent supervision, fruitful discussions and deep interest during all phases of research.

My gratitude and thanks to all my friends who helped me for fulfillment of this thesis.

Lastly, I offer a special gratitude to my mother and my wife for their valuable assistance.

LIST OF ABBREVIATIONS

ACI ADJACENT CHANNEL INTERFERENCE.

ak: UNCORRELATED INPHASE SYMBOL TAKING VALUES ± 1 WITH

EQUAL PROBABILITY.

AWGN ADDEDTIVE WHITE GAUSSIAN NOISE

Beg NOISE EQUIVALENT BANDWIDTH .

BR NORMALIZED DOUBLE SIDED RECEIVER BANDWIDTH.

B_T NORMALIZED DOUBLE SIDED TRANSMITTER BANDWIDTH.

BW BANDWIDTH.

CCI CO-CHANNEL INTERFERENCE.

C/I CARRIER TO INTERFERENCE RATIO.

C/N CARRIER TO NOISE RATIO.

Eb BIT ENERGY.

erf(x) ERROR FUNCTION.

erfc COMPLEMENTARY ERROR FUNCTION.

fo TRANSMITTER CARRIER FREQUENCY.

fb BIT RATE.

fr receiver carrier frequency.

fe SYMBOL RATE.

fek FREQUENCY SEPARATION BETWEEN ADJACENT CHANNELS.

ho impulse response of transmitter filter .

hp IMPULSE RESPONSE OF SAMPLING DETECTOR.

hr impulse response of receiver filter.

Io INTERFERENCE TERM.

ISI INTERSYMBOL INTERFERENCE.

MSK MINIMUM SHIFT KEYING.

n(t) STATIONARY WHITE GAUSSIAN NOISE.

N NUMBER OF POLES OF THE FILTER.

No SINGLE SIDED NOISE POWER SPECTRAL DENSITY.

NRZ NON RETURN TO ZERO.

OQPSK OFFSET QUADRATURE PHASE SHIFT KEYING.

P. PROBABILITY OF KRROR.

P(t) SHAPING FUNCTION OF TRANSMITTED SIGNAL.

QCI QUADRATURE CHANNEL INTERFERENCE.

QPSK QUADRATURE PHASE SHIFT KEYING.

ri(t) INPHASE RECEIVED SIGNAL.

re QUADRATURE RECEIVED SIGNAL.

S/I SIGNAL TO INTERFERENCE RATIO.

Tb BIT DURATION.

Ta SYMBOL DURATION.

LIST OF SYMBOLS

β	EXCESS BANDWIDTH.
α	PHASE DIFFERENCE BETWEEN TRANSMITTER AND RECEIVER.
$\Phi_{\mathbf{o}}$	PHASE OF TRANSMITTER CARRIER FREQUENCY.
$\Phi_{\mathbf{r}}$	PHASE OF RECEIVER CARRIER FREQUENCY.
T1c	RANDOM SYMBOL TIMING MISALIGNMENT (JITTER).
σ_n	ROOT MEAN SQUARE VALUE OF THE NOISE VOLTAGE.

LIST OF TABLES

2.1	REPRESENTATION OF 4-POSSIBLE INPUT DATA.
2.2	NULL TO NULL BANDWIDTH.
2.3	MODULATION TYPES and CORRESPONDING 35, 50 dB BANDWIDTH.
2.4	MODULATION TYPES and CORRESPONDING 50 % POWER BANDWIDTH
2.5	BANDWIDTH FOR DIGITAL MODULATION TECHNIQUES.
4.1	COMPARISON OF MSK, QPSK and 8-PSK FOR ISI.
4.2	COMPARISON OF MSK and OQPSK FOR ISI.
4.3	COMPARISON OF MSK and QPSK FOR ACI.

LIST OF FIGUERS

1.1 CATEGORIES OF TRANSMISSION IMPAIRMENTS. 1.2 TIME DOMAIN RESPONSE OF A MINIMUM BANDWIDTH NYQUIST FILTER. 1.3 POWER SPECTRUM OF DEMODULATED DATA. 1.4 SAMPLING WITH A JITTERY REFRENCE CLOCK. 1.5 TYPES OF RF INTERFERENCE. 1.6 EFFECT OF FILTERING AND LIMITING. 2.1 QPSK SYSTEM REPRESENTATION. 2.2 OQPSK SYSTEM REPRESENTATION. 2.3 BLOCK DIAGRAM OF MSK SYSTEM. 2.4 PHASE TREILLS FOR MSK. 2.5 FRACTIONAL OUT-OF BAND POWER FOR VARIOUS MODULATION TECHNIQUES. 2.6 SPECTRAL DENSITY OF QPSK, OQPSK and MSK. ENVELOPE FLUCTUATIONS FOR QPSK, OQPSK AND MSK. 2.7 3.1 SYSTEM MODEL DESCRIPTION. 4.a COMPARISON OF [30] AND PROGRAM RESULTS (ISI EFFECT). 4.1EFFECT OF FILTERS ON Pe (Rx. FILTER ONLY, or Rx. and Tx. FILTERS). 4.2 PERFORMANCE OF MSK IN PRESENCE OF ISI ONLY, N=4. 4.3 PERFORMANCE OF MSK IN PRESENCE OF QCI ONLY, N=2. 4.4 PERFORMANCE OF MSK IN PRESENCE OF QCI ONLY, N=3. 4.5 PERFORMANCE OF MSK IN PRESENCE OF QCI ONLY, N=4.

4.6

4.7

PERFORMANCE OF MSK IN PRESENCE OF ACI ONLY, N=2.

PERFORMANCE OF MSK IN PRESENCE OF ACI ONLY, N=3.

- 4.8 PERFORMANCE OF MSK IN PRESENCE OF ACI ONLY, N=4.
- 4.9 PERFORMANCE OF MSK IN PRESENCE OF ACI ONLY, N=4.
- 4.10 COMBINED EFFECT OF QCI AND ISI ON MSK SYSTEM.
- 4.11 COMBINED EFFECT OF ACI AND ISI ON MSK SYSTEM.
- 4.12 EFFECT OF ISI ON MSK, QPSK AND 8 PSK SYSTEM.
- 4.13 EFFECT OF ISI ON MSK AND OQPSK SYSTEMS.
- 4.14 EFFECT OF ACI ON MSK AND QPSK SYSTEMS.
- 4.15 EFFECT OF QCI AND ISI ON MSK, QPSK AND 8 PSK SYSTEMS.

ABSTRACT

The ever increasing demand for digital transmission channels in the radio frequency (RF) band presents a potentially serious problem of spectral congestion and is likely to cause sever adjacent and cochannel interference problems.

Minimum shift keying (MSK) is an excellent modulation technique for digital links when bandwidth conservation and the use of efficient amplitude saturating transmitters are important requirements.

In this thesis, a review of MSK system evaluation by analytical model is presented. The presented model takes into consideration the digital communication channel impairments such as thermal noise, which is modeled as additive Gaussian noise, the filtering effect which cause intersymbol interference (ISI), and quadrature channel interference (QCI). Also the adjacent channel interference (ACI) and cochannel interference are taken into consideration in the model. The resulting probability of error is studied for special cases of combinations of types of interference.

The computation results of probability of error (Pe) versus the signal to noise ratio for different interference environments as a parameter are shown, from which effect of different parameters are investigated.

Comparisons between the results of our computation and other quaternary digital modulation systems (QPSK, OQPSK), previous published results, assure the superiority of the MSK system in interference environments also.

CONTENTS

	PAGE		
LIST OF ABBREVIATIONS	i		
LIST OF SYMBOLS			
LIST OF TABLES			
LIST OF FIGURES	٧		
ABSTRACT	vii		
INTRODUCTION	1		
CHAPTER 1: INTERFERENCE IN DIGITAL COMMUNICATION CHANNEL	4		
1.1 GENERAL	4		
1.2 CATEGORIES OF TRANSMISSION IMPAIRMENTS.	5		
1.3 INTERFERENCE SOURCES IN DIGITAL COMMUNICATION			
CHANNEL.	6		
1.3.1 INTERSYMBOL INTERFERENCE (ISI).	6		
1.3.2 ADJACENT CHANNEL INTERFERENCE (ACI).	10		
1.3.3 COCHANNEL INTERFERENCE (CCI).	10		
1.3.4 QUADRATURE CHANNEL INTERFERENCE (QCI	. 12		
1.4 CONCLUSIONS .	15		
CHAPTER 2 : MINIMUM SHIFT KEYING (MSK) MODULATION TECHNIQUE	ß. 16		
2.1 INTRODUCTION.	16		
2.2 QUATERNARY MODULATION TECHNIQUES.	16		
2.2.1 QUADRATURE PHASE SHIFT KEYING (QPSK).	16		
2.2.2 OFFSET QUADRATURE PHASE SHIFT KEYING.	19		
2.3 FREQUENCY SHIFT KEYING (FSK).	21		
2.4 PRINCIPLE OF OPERATION OF MSK.	22		
2.4.1 MSK AS SPECIAL CASE OF FSK.	22		
2.4.2 MSK AS SPECIAL CASE OF OQPSK.	27		

	PAGE
2.5 COMPARISON BETWEEN MODULATION TECHNIQUES.	28
2.5.1 BANDWIDTH OF DIGITAL SIGNAL.	28
2.5.2 SPECTRAL DENSITY.	32
2.5.3 ENVELOPE FLUCTUATIONS.	35
2.6 CONCLUSION.	38
CHAPTER 3: PERFORMANCE ANALYSIS OF MSK SYSTEM IN	
INTERFERENCE ENVIRONMENT.	39
INTERFERENCE ENVIRONMENT.	29
3.1 INTRODUCTION.	39
3.2 SYSTEM MODEL DESCRIPTION.	40
3.3 ANALYSIS OF MSK IN INTERFERENCE ENVIRONMENT.	42
3.4 DERIVATION OF PROBABILITY OF ERROR (Pe).	49
3.5 COMPUTATION OF Pe.	58
3.5.1 COMPUTATION OF Pe WITH ISI .	60
3.5.2 COMPUTATION OF Pe WITH QCI.	60
3.5.3 COMPUTATION OF Pe WITH ACI.	61
3.5.4 COMBINED EFFECT OF ISI and QCI.	62
3.5.5 COMBINED EFFECT OF ISI and ACI.	63
CHAPTER 4: RESULTS, CONCLUSION AND SUGGESTION FOR	
FUTURE WORK.	64
4.1 RESULTS.	64
4.1.1 INTERSYMBOL INTERFERENCE (ISI).	66
4.1.2 QUADRATURE CHANNEL INTERFERENCE (QCI).	66
4.1.3 ADJACENT CHANNEL INTERFERENCE (ACI).	72
4.1.4 COMBINED EFFECT OF QCI AND ISI.	77
4.1.5 COMBINED EFFECT OF ACI AND ISI.	79

4.2	COMPARISON OF MSK SYSTEM AND OTHER QUATERNARY				
	Systems	IN PRESENCE OF INTERFERENCES.	79		
	4.2.1	INTERSYMBOL INTERFERENCE.	79		
	4.2.2	ADJACENT CHANNEL INTERFERENCE.	84		
	4.2.3	COMBINED EFFECT OF QCI AND ISI.	84		
4.3	CONCLUS	IONS.	88		
4.4	SUGGEST	ION FOR FUTURE WORK.	90		
APPENDIC	E S				
APPEN	DIX 1:	CONVOLUTION ALGORITHM.	91		
APPEN	DIX 2:	PROGRAM FLOW CHARTS.	98		
APPEN	DIX 3:	PROGRAM LISTING (FORTRAN 77).	103		
REFERENC	ES.		114		

ARABIC SUMMERY.