A STUDY OF COLLAGEN TYPE I CROSS-LINK ASSOCIATED C-TELOPEPTIDE: A NEW MARKER OF BONE RESORPTION IN METASTATIC BONE DISEASE

THESIS

SUBMITTED FOR PARTIAL FULFILMENT OF Master Degree in

CLINICAL AND CHEMICAL PATHOLOGY

Ву

Layla Ezz El-Din Mohamed

(M.B.B.C.h.)

SUPERVISED BY

Prof. Dr. Hani Sobhy Rufail
Prof. of Clinical Pathology

Faculty of Medicine - Ain Shams University

Prof. Dr. Ola Hamdy El-Demerdash

Ass. Prof. of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Arig Aly Seif

Lecturer of Clinical Pathology Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 1997

ABSTRACT

Type I collagen is synthesized by osteoblasts and accounts for about 90% of the organic matrix of bone. We have used a new specific immunoassay for the cross-linked carboxy-terminal telopeptide of type I collagen (ICTP) which allows assessment of degradation of type I collagen. Forty six patients having cancer lung, breast and prostate were investigated. Twenty two of them had metastases to bone, eleven had metastases to distant organs other than bone and thirteen patients had localized cancer. The whole group of patients with distant metastasis showed a highly significant increase in their total calcium, ALP and ICTP levels. However, the degree of elevation of ALP and ICTP was much higher in patients with bone metastases (p<0.01 and p<0.001 respectively) as compared to those with non-bone metastasis. Concerning patients with localized malignant disease, these showed a statistically insignificant difference in their calcium, phosphorous and ALP levels as compared to the control group (p>0.05 respectively). However, a highly significant increase was recorded in their ICTP levels (p<0.001). We concluded that ICTP is an excellent non-invasive biochemical marker of bone resorption. It is of great value in identifying patients with bone metabolism. At a cut off level of 7 μg/L, its diagnostic sensitivity was 100%, specificity 95.8% and diagnostic accuracy 95% as evidenced by ROC curve analysis.

DEDICATION

▼ TO MY FAMILY

å

MY HUSBAND ♥

Layla

ACKNOWLEDGMENT

First and foremost thanks are to GOD, the most beneficial and merciful

It is a great pleasure to express my deepest appreciation and gratitude to *Prof. Dr. Hany Sobhy Rufail, Prof. of Clinical and Chemical Pathology, Ain Shams University* for his generous advice, continuous encouragement and faithful guidance.

My sincere appreciation to Ass. Prof. Dr. Ola Hamdy El-Demerdash, Ass. Prof. of Clinical and Chemical Pathology, Ain Shams University for her generous co-operation, continuous advice and support, keen supervision which made the completion of this work possible.

I am indebted to *Dr. Arig Aly Seif*, *Lecturer of Clinical and Chemical Pathology*, *Ain Shams University* for her extreme patience and valuable suggestions, she offered me a lot of her time and effort throughout the whole work.

CONTENTS

INTRODUCTION AND AIM OF THE WORK	1				
REVIEW OF LITERATURE					
I. BONE STRUCTURE	2				
A. Cellular Elements of Bone					
B. Noncellular Elements of Bone	2 3				
II. BONE TURNOVER: BONE FORMATION					
AND RESORPTION					
BONE FORMATION:	_				
A. Mechanism of Bone Formation_	6				
B. Biochemical Markers of Bone Formation					
Alkaline Phosphatase	_				
 a. Isoenzymes of alkaline phosphatase 	7				
 b. Clinical importance of bone alkaline 					
phosphatase	8				
 c. Methods of determination of total 					
alkaline phosphatase	10				
d. Methods of determination of alkaline					
phosphatase isoenzymes					
i. Electrophoresis	11				
ii. Chemical inactivation	13				
iii. Precipitation with wheat germ lectin	13				
iv. Heat inactivation	14				
v. Chromatography	15				
vi. Immunological methods	15				
2. Osteocalcin					
a. Osteocalcin as a marker of bone turnover	17				
b. Factors affecting osteocalcin level					
i. Physiological factors	18				
ii. Pathological factors	18				
c. Methods of assay of osteocalcin					
i. Radioimmunoassay for osteocalcin					
(RIA)	19				
ii. Enzyme immunoassay for osteocald	in				
(EIA)	20				
3. Procollagen I Carboxy-Terminal Extension Peptid	е				
a. Structure of PICP	22				
b. Clearance of PICP	22				
c. Role of PICP as a marker of bone					
	24				
formation	24				
d. Clinical utility of PICP	25				
e. Method of determination of PICP	20				

BONE	RESORPTION	
	A. Mechanism of Bone Resorption	26
	B. Biochemical Markers of Bone Resorption	
	1. Fasting Urinary Calcium	
	a. Sample collection and reference range	26
	b. Clinical importance of fasting urinary	
	calcium assay	27
	2. Hydroxyproline	
	a. Chemical structure and sources of	
	hydroxyproline	28
	b. Excretion of hydroxyproline	28
	c. Disadvantage of hydroxyproline as	
	a marker of bone resorption	29
	d. Clinical significance of hydroxyproline	
	in bone disease	30
	e. Methods of determination of hydroxyproline	
	i. Chromatographic estimation	31
	ii. Colorimetric method	32
	3. Hydroxylysine Glycosides	~-
	a. Chemical structure and sources	
	of hydroxylysine glycosides	32
	b. Clinical application of urinary	
	hydroxylysine assay	32
	c. Method of determination of urinary	-
	hydroxylysine	32
	Pyridinium Cross-Links	UL
	a. Chemical structure of pyridinium	
	cross-links	34
	b. Sites	34
	c. Biological variation in pyridinium	רט
	cross-links levels	36
	d. Advantages of pyridinium cross-links	00
	* · · ·	36
	over hydroxyproline	JU
	e. Clinical usefulness of pyridinium	36
	cross-links	JU
	f. Methods of determination of	
	pyridinium compounds in urine	
	i. High performance liquid	37
	chromatography ii. Enzyma linked immunosorbent	3/
	ii Enzyme iinked immiindsotnent	

assay

38

III. NEW MARKERS OF BONE RESORPTION	
A. The Carboxy Terminal Telopeptide of	
Type I Collagen (ICTP)	
Structure of ICTP	40
2. Clearance of ICTP	40
3. Biological Variation in ICTP Levels	41
 ICTP as a Specific Bone Resorption Marker 	42
Advantages of ICTP as a Bone Resorption	
Marker Over Other Markers	42
Clinical Significance of Serum ICTP	
a. Multiple myeloma	43
 b. Postmenopausal osteoporosis 	44
c. Rheumatoid arthritis	44
d. Metabolic bone disease	45
Method of Determination of ICTP	45
B. Urinary Excretion of Type I Collagen	
C-Telopeptide (CrossLaps)	
Structure of CrossLaps	48
2. Clinical Importance of CrossLaps	47
Method of Determination of CrossLaps	48
C. Type I Collagen Cross-Linked	
N-Telopeptide (NTx)	
 Clinical Applications of N-Telopeptide Assay 	48
Method of Determination	49
SUBJECTS AND METHODS	50
RESULTS	62
DISCUSSION	77
SUMMARY	82
CONCLUSIONS AND RECOMMENDATIONS	85
REFERENCES	86
ARABIC SUMMARY	

LIST OF ABBREVIATIONS

o1(l): Alpha 1 of type I collagen

o2(l): Alpha 2 of type I collagen

ALP: Alkaline phosphatase

AUP: Aminomethyl propanol buffer

BGP: Bone Gla protein

BSA: Bovine serum albumin

C1q: Complement 1q

Ca_T: Total serum calcium EIA: Enzyme immunoassay

ELISA: Enzyme linked immunosorbent assay

FN: False negative FP: False positive

HPLC: High performance liquid chromatography

ICTP: Type I collagen carboxy terminal telopeptide

IRMA: Immunoradiometric assay NSB: Non specific binding

NSB: Non specific binding
NTx: Amino-terminal telopeptide

PBS: Phosphate buffered saline PEG: Polyethylene glycol

PICP: Procollagen carboxy-terminal propeptide of type I

collagen

PINP: Procollagen amino-terminal propeptide of type I

collagen

PTH: Parathyroid hormone RIA: Radioimmunoassay

ROC: Receiver Operating Characteristic

Inorganic phosphorus

TN: True negative TP: True positive

Pi:

LIST OF TABLES

Table (1): Clinical data of subgroup la (p. 51)

Table (2): Clinical data of subgroup lb (p. 52)

Table (3): Clinical data of group II (p. 52)

Table (4): Data of the control group (p. 64)

Table (5): Data of patients in subgroup Ia (p. 65)

Table (6): Data of patients in subgroup lb (p. 66)

Table (7): Data of patients in group II (p. 67)

Table (8): Descriptive statistics of bone profile and ICTP levels of the various studied groups (p. 68)

Table (9): Statistical comparison between the various studied parameters of patient groups as compared to the control group (p. 69)

Table (10): Correlation study between ICTP and the parameters of bone profile of the different studied groups (p. 70)

LIST OF FIGURES

Fig. (1):	Type I	procollagen	(p.	23)
-----------	--------	-------------	-----	-----

- Fig. (2): Chemical structure of proline and hydroxyproline (p. 29)
- Fig. (3): Chemical structure of lysine and hydroxylysine (p. 33)
- Fig. (4): Chemical structure of pyridinium cross-links (p. 35)
- **Fig. (5):** Sites of pyridinoline cross-linking in type I collagen fibrils (p. 39)
- Fig. (6): Schematic representation of the ICTP antigen (p. 41)
- Fig. (7): Mean serum corrected calcium levels (mg/dl) in the various studied groups (p. 71)
- **Fig. (8):** Mean serum inorganic phosphorus levels (mg/dl) in the various studied groups (p. 72)
- Fig. (9): Mean serum alkaline phosphatase levels (IU/L) in the various studied groups (p. 73)
- Fig. (10): Mean serum ICTP levels (IU/L) in the various studied groups (p. 74)
- Fig. (11): Scatter diagram showing distribution of ICTP levels in the various studied groups (p. 75)
- Fig. (12): The clinical utility of ICTP in identifying patients with bone metastasis from those without radiologic evidence of bone metastases (p. 76)

INTRODUCTION AND AIM OF THE WORK

Introduction:

Bone is constantly being remodeled with resorption of old bone by osteoclasts and the formation of new bone by osteoblasts. The rate of these processes can be assessed by measuring bone matrix components of enzymes released into the circulation during breakdown and renewal. Biochemical markers of bone formation which are alkaline phosphatase, osteocalcin, and the carboxy-terminal propeptide of type I procollagen can be measured in blood samples, but at least until recently, urine samples have been needed for valid measurement of the biochemical markers of bone resorption which are hydroxyproline and pyridinoline cross-links (Delmas, 1991).

The assay of pyridinoline cross-links is not specific for type I collagen. Moreover, the assay requires a relatively tedious high performance liquid chromatography analysis of urine samples. Clearly, there is a need for a simple, quantitative test of type I collagen degradation based on analysis of serum samples. The carboxy-terminal pyridinoline cross-linked telopeptide of type I collagen (ICTP) in serum has however, been proposed as a possible new serum marker of bone resorption (Risteli et al., 1993).

Aim of the Work:

The aim of the present work is to give a detailed account on the various biochemical markers of bone turnover with special reference to alkaline phosphatase and collagen cross-links associated C-telopeptide in an attempt to investigate their diagnostic significance for the presence of bone metastasis in cancer patients as compared to bone scans.

REVIEW OF LITERATURE

I. BONE STRUCTURE

Bone are specialized connective tissue composed of intracellular calcified material, the bone matrix, and different cell types namely the osteoprogenitor cells, osteoblasts, osteocytes, osteoclasts and bone lining cells. All bones are lined on both internal and external surfaces by layers of tissue containing osteogenic cells, endosteum on the inner surface and periosteum on the outer surface (*Holtrop*, 1975).

Microscopically, bones are composed of cellular and non-cellular elements:

A. Cellular Elements of Bone:

1. Osteoprogenitor Cells:

The osteoprogenitor cells are undifferentiated stromal cells having the capacity to differentiate by mitotic division, thus, developing osteoblasts, or bone forming cells (Owen, 1970).

2. Osteoblasts:

Osteoblasts are mononuclear cuboidal bone matrix synthesizing cells with basophilic cytoplasm and high alkaline phosphatase activity. They are derived from stromal fibroblast-like cell precursors (Warshwsky, 1982). Osteoblasts are associated with bone formation and are formed on the surface of growing bones where they produce mineralized bone matrix. They are also responsible for the synthesis of the organic components of bone matrix such as collagen and mucopolysaccharide (Marie, 1982). Alkaline phosphatase, a product of osteoblast, is believed to be involved in the synthesis of procollagen which may be important in the process of mineralization (Boskey, 1981).

3. Osteocytes:

Osteocytes arise from the osteoblasts. Initially, osteoblasts are present on the surface of the bone, then they become entrapped within the