
LIPOPROTEIN PROFILE IN JUVENILE RHEUMATOID ARTHRITIS

#### **Thesies**

Submitted in Partial Fulfilment of the Master Degree in Pediatrics



By

Amany Karam Mohamed El-Gindy

## Supervised By

### Prof. Yehia Mohamed El - Gamal

Professor of Pediatrics and Head of the Pediatric Allergy and Immunology Unit Ain Shams University

618.9272 A K

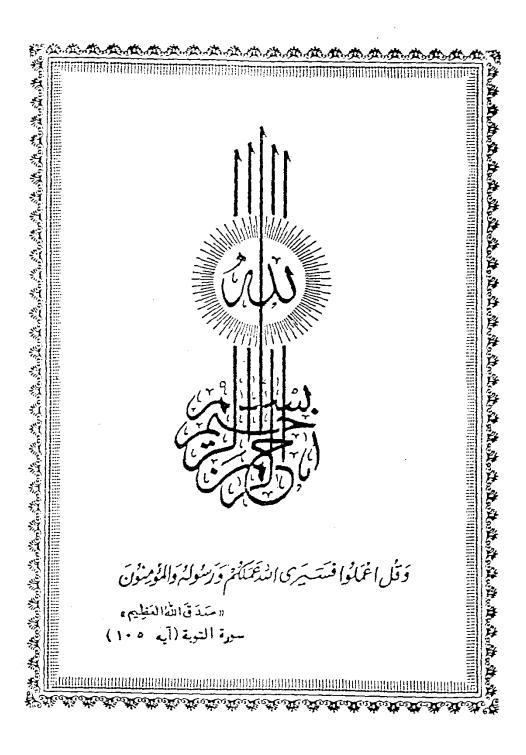
**Assistant Supervisors** 

### Dr. Elham Mohamed Hossny

Lecturer of Pediatrics - Ain Shams University

Dr. Mohamad Salah El - Deen Faheem

Lecturer of Pediatrics - Ain Shams University


Dr. Nashwa Ahmed Adel El - Badawi

Lecturer of Clinical Pathology - Ain Shams University

Faculty of Medicine Ain Shams University

1992

48988





# **List of Contents**

|                                             | Page |  |
|---------------------------------------------|------|--|
| ☐ Introduction & Aim of the Work            |      |  |
| ☐ Review of Literature                      |      |  |
| * Juvenile Rheumatoid Arthritis             |      |  |
| • Etiology                                  | 1    |  |
|                                             | 1    |  |
| ◆ Pathology                                 | 3    |  |
|                                             | 5    |  |
| <ul> <li>Clinical Manifestations</li> </ul> | 5    |  |
| • Course & Prognosis                        | 16   |  |
| Laboratory Investigations                   | 17   |  |
|                                             | 23   |  |
| * Plasma Lipoproteins                       |      |  |
| ★ Lipoprotein Function                      | 26   |  |
|                                             | 26   |  |
| † Plasma Lipid & Lipoprotein Levels         | 32   |  |
|                                             | 35   |  |
| * Lipoprotein Disturbances in Children      | 37   |  |
| ☐ Subjects & Methods                        | 40   |  |
| □ Results                                   | 51   |  |
| □ Discussion                                | 89   |  |
| ☐ Recommendations                           | 103  |  |
| □ Summary                                   | 104  |  |
| □ References                                | 106  |  |
| ☐ Arabic Summary                            |      |  |

### List of Abbreviations

ANA Antinuclear antibody

APO Apolipoproteins

C3 Third component of complement

Chylo chylomicron.

CNS Central nervous system

**CRP** C- reactive protein

**DIC** Disseminated intravascular coagulopathy

ESR Erythrocyte sedimentation rate

**HDL(HDLs)** High density lipoproteins

HDL-C High density lipoprotein cholesterol

IDL(IDLs) Intermediate density lipoproteins

Ig Immunoglobulin

JRA Juvenile rheumatoid arthritis

LCAT Lecithin cholesteral acyl transferase

LDL(LDLs) Low density lipoproteins

LDL-C Low density lipoprotein cholesterol

LPL Lipoprotein lipase

NSAID Non steroidal anti-inflammatory drug

PCAT Phosphatidyl choline cholesterol acyl transferase

RA Rheumatoid arthratis

RF Rheumatoid factor

VLDL (VDLs) Very low density lipoproteins

# **List of Tables**

| I Tabl | es in       | Review of Literature                        | Page    |
|--------|-------------|---------------------------------------------|---------|
| Table  | <b>(1)</b>  | Criteria for the classification of JRA      | 4       |
| Table  | <b>(2</b> ) | Classification of the types of onset of JRA | 6       |
| Table  | (3)         | Acute phase proteins                        | 18      |
| Table  | <b>(4)</b>  | Drug therapy for JRA                        | 24 - 25 |
| Table  | <b>(5)</b>  | Plasma cholesterol and triglyceride levels  | 34      |
|        |             | in childhood and adolescence                |         |
| II Tab | les of      | Results                                     |         |
| Table  | (6)         | Inborn irrors of lipoprotein metabolism     | 38      |
| Table  | <b>(7)</b>  | Acquired disorders of lipoprotein           |         |
|        |             | metabolism                                  | 39      |
| Table  | (8)         | Clinical & laboratory data of the control   |         |
|        |             | group                                       | 52      |
| Table  | (9)         | Clinical & laboratory data of rheumatoid    |         |
|        |             | patients                                    | 54 - 55 |
| Table  | <b>(10)</b> | Serum lipids in rheumatoid patients         |         |
|        |             | versus controls                             | 57      |
| Table  | (11)        | Serum lipids in rheumatoid patients in      |         |
|        |             | activity versus controls                    | 61      |
| Table  | (12)        | Serum lipids in rheumatoid patients in      |         |
|        |             | remission versus Controls                   | 63      |

| Table (13)        | Serum lipids & ESR in rheumatoid           |    |
|-------------------|--------------------------------------------|----|
|                   | activity versus remission                  | 65 |
| <b>Table</b> (14) | Serum lipids in rheumatoid patients        |    |
|                   | receiving corticosteroids versus controls. | 67 |
| <b>Table (15)</b> | Serum lipids in the group of rheumatoid    |    |
|                   | patients receiving NSAID versus controls   | 69 |
| <b>Table</b> (16) | Serum lipids in rheumatoid patients under  |    |
|                   | both Corticosteroids & NSAID versus        |    |
|                   | Controls                                   | 71 |
| <b>Table</b> (17) | Serum lipids in rheumatoid patients not    |    |
|                   | receiving anti - rheumatic therapy versus  |    |
|                   | Controls                                   | 73 |
| <b>Table</b> (18) | Serum lipids & ESR in the group of         |    |
|                   | rheumatoid factor positive versus          |    |
|                   | rheumatoid factor negative patients.       | 78 |

# **List of Figures**

|            |                                                    | Page |
|------------|----------------------------------------------------|------|
| Figure (1) | Over view of lipoprotein inter relation            |      |
|            | ships                                              | 32   |
| Figure (2) | Serum HDL in rhumatoid patients versus             |      |
|            | controls                                           | 58   |
| Figure (3) | Serum Apo A <sub>1</sub> in rheumatoid patients    |      |
|            | versus controls                                    | 58   |
| Figure (4) | Serum Apo B in rheumatoid patients in              |      |
|            | activity versus controls                           | 62   |
| Figure (5) | Serum HDL in rheumatoid patients in                |      |
|            | remission versus controls                          | 64   |
| Figure (6) | Serum Apo B/Apo A <sub>1</sub> ratio in rheumatoid |      |
|            | patients in remission versus controls              | 64   |
| Figure (7) | Serum HDL in rheumatoid patients under             |      |
|            | various anti - rheumatic drugs versus              |      |
|            | control group                                      | 74   |
| Figure (8) | Serum LDL in rheumatoid patients under             |      |
|            | varoius anti - rheumatic drugs versus              |      |
|            | control group                                      | 74   |
| Figure (9) | Serum triglycerides in rheumatoid                  |      |
|            | patients under various anti - rheumatic            |      |
|            | drugs versus control group                         | 75   |

| Figure | (10)        | Serum Apo B in rheumatoid patients                |    |
|--------|-------------|---------------------------------------------------|----|
|        |             | under various anti - rheumatic drugs              |    |
|        |             | versus control group                              | 75 |
| Figure | (11)        | Mean ApoB/ApoA <sub>1</sub> ratio in rheumatoid   |    |
|        |             | factor positive versus negative patients          | 79 |
| Figure | (12)        | Serum Apo B/Apo A <sub>1</sub> and age in         |    |
| ,      |             | rheumatoid patients not under therapy             | 80 |
| Figure | (13)        | Serum LDL/ HDL and age in rheumatoid              |    |
|        |             | patients not under therapy                        | 81 |
| Figure | (14)        | Serum cholesterol /HDL and Age in                 |    |
|        |             | rheumatoid patients not under therapy             | 81 |
| Figure | <b>(15)</b> | Serum Apo B/Apo A <sub>1</sub> and body weight in |    |
|        |             | the whole rheumatoid patients                     | 82 |
| Figure | <b>(16)</b> | Serum LDL/HDL ratio and body weight               |    |
|        |             | in the rheumatoid children not under              |    |
|        |             | therapy                                           | 83 |
| Figure | <b>(17)</b> | Serum cholesterol /HDL ratio and body             |    |
|        |             | weight in the rheumatoid children not             |    |
|        |             | under therapy                                     | 83 |
| Figure | (18)        | Serum ApoB/ApoA <sub>1</sub> ratio and height in  |    |
|        |             | the rheumatoid patients not under therapy         | 84 |
| Figure | (19)        | Serum LDL/ HDL ratio and height in the            |    |
|        |             | rheumatoid patients not under therapy             | 85 |

| Figure (20)     | Serum cholesterol / HDL ratio and height       |    |
|-----------------|------------------------------------------------|----|
|                 | in the rheumatoid patients not under           |    |
|                 | therapy                                        | 85 |
| Figure (21)     | Serum triglycerides and ESR in                 |    |
|                 | rheumatoid patients in activity                | 86 |
| Figure (22)     | Serum LDL/HDL ratio and ESR in                 |    |
|                 | rheumatoid patients                            | 87 |
| Figure (23)     | Serum cholesterol / HDL ratio and ESR          |    |
|                 | in rheumatoid patients                         | 88 |
|                 |                                                |    |
|                 | List of Plates                                 |    |
| Plate (1) Plate | e for apolipoprotein A <sub>1</sub> estimation | 56 |
| DI ( (a)        | e for apolipoprotein B estimation              | 60 |

## Introduction & Aim of the Work

The metabolic changes in chronic inflammatory connective tissue diseases ought to be recognized not only because of their potentially tissue - damaging effect but also because treatment with anti-inflammatory and disease - modifying drugs may have metabolic side effects (Svenson et al., 1987).

Dyslipoproteinemia is a feature of certain rheumatic diseases including adult rheumatoid arthritis (Lorber et al., 1985). This may explain the increased mortality reported in patients with rheumatoid arthritis - compared to the general population - with cardiovascular disease on the top of the list of causes of mortality (Mutru et al., 1985).

Increased concentrations of total cholesterol, low density lipoprotein cholesterol (LDL - C) and apolipoprotein B (Apo B) have been found to be associated with an increased risk of cardiovascular disease. Moreover, low concentrations of high density lipoprotein - cholesterol (HDL - C) and apolipoprotein A<sub>1</sub> (Apo A<sub>1</sub>) have been found to be risk factors for cardiovascular disease (Kottke et al., 1986).

This study is aimed to outline the lipoprotein and apolipoprotein patterns in patients with juvenile rheumatoid arthritis and their possible relation to disease activity and therapy.

### Juvenile Rheumatoid Arthritis

Juvenile rheumatoid arthritis (JRA) is a disease or group of diseases characterized by chronic synovitis and associated with a number of extra - articular inflammatory manifestations.

A confusing number of names have been applied, including juvenile arthritis, Still's disease, juvenile chronic polyarthritis, and chronic childhood arthritis (Harris, 1990).

Juvenile rheumatoid arthritis is one of the more frequent chronic illnesses of childhood and an important cause of disability and blindness. It may not represent a single disease but a syndrome of diverse etiologies (Cassidy et al., 1986).

As a matter of fact, it is the most common of the collagen vascular diseases in children (Rennebohm, 1988).

### ☐ Etiology:

The etiology of JRA is unknown. Among possible causes are infection, autoimmunity, trauma, stress, and immunogenetic predisposition.

An inflammatory arthritis of humans has been observed with infections from both mycoplasma and viruses (rubella and parvovirus) (Schwarz et al., 1987). Certain viral illnesses of

childhood such as rubella may result in a self - limited arthritis; persistent rubella virus infection has been demonstrated in the synovia of children with JRA (Chantler et al., 1985).

Chronic inflammation may be perpetuated by immune complexes formed from auto antibodies such as antinuclear antibody (ANA) or rheumatoid factor (RF) induced by infections.

It is observed frequently that onset of JRA may follow physical trauma to an extremity such as fall or an ankle sprain. It is also well documented that psychological stress appears to be particularly common in families of children with JRA (Henoch et al., 1978).

### ☐ Genetic background:

There are very few reported instances in which JRA has been observed in more than one family member. Although the cases are few in number, it is striking that within any one family JRA tended to be of the same type of onset (Rosenberg and Petty, 1980). Early studies of Ansell et al., 1962 reported that female relatives of children with JRA showed an increased frequency of seronegative erosive polyarthritis and that male relatives had an increased prevalence of sacroiliac arthritis (Ansell, 1977). One further association bears attention, that is the occasion occurrence of JRA and adult rheumatoid arthritis (RA) in the same family. Rossen et al.,

and concluded that susceptibility to arthritis was influenced by a dominant gene with variable penetrance and expressivity.

### Pathology:

### I) Articular.

Rheumatoid arthritis is characterized by chronic non suppurative inflammation of the synovium. Affected synovial tissues are edematous, hyperemic and infiltrated with lymphocytes and plasma cells. Secretion of increased amounts of joint fluid results in effusion (Schaller, 1980).

Projections of thickened synovial membrane from villi, which protrude into joint spaces. Hyperplastic rheumatoid synovia, may spread over and become adherent to articular cartilage (Pannus formation). With continuing chronic synovitis and proliferation of synovia, articular cartilage and other joint structure may become eroded and progressively destroyed.

Many children with JRA never incur perminent joint damage despite prolonged synovitis(Harris, 1990). However, once joint destruction has commenced, erosions of subchondral bone, narrowing of the "joint space" (loss of articular cartilage), destruction or fusion of bones, and deformity, subluxation, or ankylosis of the joints may result. Tenosynovitis and myositis may be present (Williams and Ansell, 1985).