

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

NO NO Y

GASEOUS FUEL GENERATION FROM WOOD PELLETS BY PARTIAL COMBUSTION IN AN UPDRAFT GASIFIER

Ву

ESMAIL MOHAMED ALI MOKHEIMER

B.Sc. 1985 (Ain Shams University)

60 MSubmi

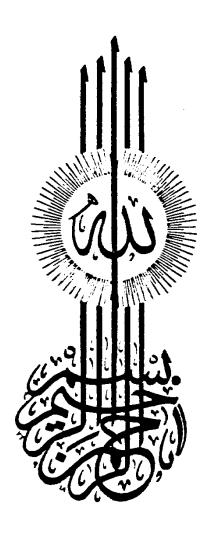
A Thesis

Submitted in partial fulfillment for the

requirements of the Degree of M. Sc.

in Mechanical Engineering (Energy)

Supervised by


7810

PROF. Dr. A. S. GAD EL-MAWLA
HEAD OF ENERGY AND AUTOMOTIVE
ENGINEERING DEPARTMENT, AIN
SHAMS UNIVERSITY, FACULTY OF
ENGINEERING.

Dr. Mohamed Refaat SALEM
Lecturer in the Energy
and Automotive Engineering
Dept. Ain Shams university,
Faculty of Engineering.

Cairo - 1988

" وعلمك ما لم تكن تعلم وكان فضل الله عليــك عظيمـا " صدق الله العظيم

Name, Title & Affiliation

Signature

1- Prof. Abdul Razik Abdul Fatah Ibrahim
Faculty of Engineering and Technology,
Helwan University.

E STATE OF THE STA

2- Prof. Ahmed El-Said Gad El-Mawla (Supervisor)

()p

Head of Power and Automotive Engineering
Department, Faculty of Engineering,
Ain Shams University.

3- Prof. Mohamed Mahmoud El-Kotb Faculty of Engineering, Cairo University. ill,

Date: / / 1988

STATEMENT

This disseration is submitted to Ain Shams University for the degree of M. Sc.in Mechanical Engineering (Energy).

The work included in this thesis was carried out by the author in the department of Energy and Automotive Engineering, Ain Shams University, from / / 1985 to / / 1988.

No part of this thesis has been submitted for a degree or a qualification at any other university or institute.

Date : 31-12-1988

Signature: Esmai (Mokheimer

Name : Esmail Mohamed Ali

TO

MY BROTHER : AHMED

ABSTRACT

Gasification as a thermochemical conversion process of wastes and biomass into gaseous fuels has been considered in the present work. Partial Combustion gasification process was studied using an updraft, air blown, fixed bed gasifier. Set of experiments were carried out to study the effect of air flow rate and fuel particle size on the performance of the gasifier. The gasifier used in experiments was made up of a steel cylinder of 20 cm inner diameter, and 100 cm long resting on a preforated steel plate as a grate. The inner surface of this cylinder coated by a clay layer of 1.5 cm thickness. Wood cubes of different cube sides (0.5. 1.0, 1.5. and 2.0 Cm) have been used as the material to be gasified. Experiments were carried out at four different air flow rates (430, 515, 735, 1035 kg/ m2 h). To study the effect of the above two parameters on the gasifier performance, the calorific value of the produced gas and its composition were determined at different operating conditions. The calorific value was determined using Junikers calorimeter and was noticed to increase with the decrease of the particle size . calorific value was found to increase also with the increase of the air flow rate to reach a maximum value at a certain point and starts deteriorating thereafter. This point was found to be at air flow rate of $735~\mathrm{kg}$ / $\mathrm{m}2$ hr. The calorific

value of the produced gas ranged between 3.2 to 4.8 MJ / nm3. Concentration of CO2 in the produced gas was measured using infera red gas analyzer and was found to be ranged between 7.23 % to 9.88 %, while the concentration of CD was measured using Orsatt gas analyzer and was found to be in the range of 11.7% to 15.6%. The equivalence ratio for the gasification process was found to vary with the variation of either air flow rate and the particle size or both. The efficiency of the gasification process was determined and was found to increase with the decrease of particle size, the increase of flow rate, and consequintly the increase of the equivalence ratio. The optimum equivalence ratio for operating of an updraft gasifier for the gasification of wood pellets ranges between 0.25 to 0.31. The maximum cold gasification effeciency was 74 % at equivalence ratio of 0.31. The gasifier capacity was determined and was noticed to increase with the decrease of the pellet size and increase air flow rate. The gasifier capacity during the present work was found to be on the range of 4 to 11.5 kW.

ACKNOWLEDGEMENTS

The author is deeply grateful to his supervisors. Professor Dr. A. S. Gad El-Mawla for his supervision of the research programme and his interest in the author welfare. and Dr. M. R. Salem for his sincer guidance, valuable advices and great assistance at all stages of the work.

Many thanks to Y. H. El-Banhawy and Dr. A. M. Abdul-Aziz for their continuous help and support throughout the research work. The author wishes also to acknowledge the help offered by the technical staff of the combustion laboratory. Many thanks to my colleagues and in particular to Eng. Amgad El-Gowainy.

Finally I would like to express my deepest gratitude to my family especially to my mother whom I owe a lot of the success in my life.

CONTENTS

ABSTRACT		i
ACKNOWLEDGEMENTS		iii
CONTENTS		iv
NOMENCLATURE		v
CHAPTER 1	INTRODUCTION	1
CHAPTER 2	LITERATURE SURVEY	11
	2.1 Drying Process	12
	2.2 Pyrolysis Process	12
	2.3 Combustion and Reduction process	14
	2.3.1 Combustion Reaction	16
	2.3.2 Reduction Reaction	17
CHAPTER 3	EXPERIMENTAL WORK	35
	3.1 Experimental Set Up and	
	Instrumentation	3 5
	3.2 Experimental Procedure	38
	3.3 Experimental Programme	3 9
CHAPTER 4	EXPERIMENTAL RESULTS AND DISCUSSION	44
CHAPTER 5	CONCLUSIONS AND RECOMMENDATIONS	118
REFERENCES		120
APPENDIX I	CALIBRATION OF ORIFICE FLOW METERS	125
APPENDIX II	CALIBRATION OF THERMOCOUPLES	129
APPENDIX III	DETERMINATION OF THE PRODUCED GAS	134
	CALORIFIC VALUE	

AFFENDIX IV	EVALUATION OF THE GASIFIER	136
APPENDIX V	PROPERTIES OF WOOD USED	138

NOMENCLATURE

A	Outer surface area of the pellets, m ²
Ср	Specific heat of water, kJ / kg.K
c.v	Calorific value of the produced gas, kJ / nm^3
đ	Particle diameter, m
E	Activation energy
ER	Equivalence ratio, dimensionless
К	Constant
Km	Mass transfere coefficient, kg / m². hr
Ma	Air mass flow rate, kg / hr
Mg	Mass of the produced gas, kg / hr
Mw	Mass of water fed to Junikers calorimeter, kg
N	Constant drying rate
Fg	Produced gas pressure at the inlet of Junikers
	calorimeter, N / m ²
Ps	Standard pressure, N / m ²
R	Gas constant, J / kg. K
SGR	Specific gasification rate, kg / m . hr
Т	Reaction temperature, K
Τg	Produced gas temperature at the inlet of
	Junikers calorimeter, K
Ts	Standard temperature, K
t	Experiment period, min
V	Air velocity, m / sec

٧a	Axial air velocity, m / sec
٧g	Volume of the produced gas fed to Junikers
	calorimeter, m ³
۷s	The corresponding value of Vg at standard
	temperature and pressure, m ³
Χo	Thickness of the combustion layer, m
و	Density, kg / m ³
η_{ϵ}	Cold gasification efficiency, dimensionless
7	Engine efficiency, dimensionless
Ė	

CHAPTER 1

INTRODUCTION

The energy crisis promoted an increase interest alternatives and renewable sources of energy. The stored energy in the agricultural wastes and residues is one of the most important renewable energy sources. The use of the agricultural wastes and residues as an energy source provides an opportunity to reduce the current dependence on fossil fuels. This will evidently have strong implication to agricultural-based industries and farming projects which require either process steam and/or energy to run different machinery. This calls for the conversion of agricultural residues to a more convenient form, liquids or gaseous, before they could be used in existing machinery or devices. Significant developments have emerged during recent years, [1-3], in the technologies of converting low-value residues to high-value energy. Conversion of residues into energy can be accomplished by either biological or thermochemical processes. Biological, anaerobic fermentation, schemes are based on storing the wastes, with added materials, under controlled thermal and physical conditions to produce gaseous or liquid fuels. Thermochemical conversion processes involve heating the wastes to a temperature that causes the high molecular weight organic compounds to decompose into smaller molecules. The temperature and heating rates employed dictate whether the primary product is gaseous or liquid fuels. Thermochemical processes have inherent advantages when compared to the biological processes, [41. Some of these advantages are:

- Thermochemical processes have residence time for conversion of the agricultural wastes into gaseous or liquid fuels on the order of minutes or seconds, while in the biological processes this residence time will be on the order of 5 to 10 days.

-thermochemical processes have a very high cellulosic conversion fraction compared to the biological processes if the temperature is sufficiently elevated. In some reactor systems it is possible to gasify in excess of 90 % by weight of the incoming organic matter.

- Thermochemical processes are not greatly affected by the changes in the composition of the feedstock, while biological processes are extremely susceptible to slight changes in the composition of the feedstock. However, when new feedstock is put in the reactor system, of a thermochemical process, careful tests must be made to ensure that coking or deposition tar on the equipment does not occur.
- storage of the feedstock will have a greater detrimental effect on biological processes than on thermal processes. If moisture is presented in the feedstock during storage, some