GTO PWM INVERTER FOR CONTROLLING THREE PHASE INDUCTION MOTORS

A THESIS

Submitted to the Faculty of Engineering in

Partial Fulfillment of the Requirements

for the Degree of

Master of Science

In the Department of Electrical Power and Machines

Ain-Shams University

5.4 5.4

Вy

ر در آراد بالمعط شیرها به کردفی**غ**

Eng. Shawki Hamed Arafa (B. Sc., 1986)

Cairo, Egypt

- u8192

1993

The author claims copyright. Use shall not be made of the material contained herein without proper acknowledgement as indicated on the following page

Examiners Committee

Name , Title & Affiliation

Signature

- 1- Prof. Dr. Abdel-Fattah Mahmoud Kheireldin, Electrical Power & Machines Department, Ain-Shams University.
- 2- Prof. Dr. Said AbdeL-Monim Wahsh,
 Head of the Power Electronics Department,

Said Wahsh

A. Kheireldy

3- Prof. Dr. Hamdy Saleh Khalil,
Electrical Power & Machines Department,
Faculty of Engineering,
Ain-Shams University.

Electronics Research Institute.

H.S.Khalil

4- Prof. Dr. Mahmoud Abdel-Rahman El-Bakry,
Power Electronics Department,
Electronics Research Institute.

Mahmand El Bakry

STATEMENT

This dissertation is submitted to Ain Shams University for the degree of Master of Science in Electrical Power and Machines.

The work included in this thesis was carried out by the author in the Department of Electrical Power and Machines.

No part of this thesis has been submitted for a degree or qualification at any other university or institution.

Date:

Signature: Shanki Hanfa

Name: Shawki H. Arafa

The author has agreed that the library, Ain-Shams University, make this thesis freely available for inspection. shall Moreover, the author has agreed that permission for extensive copying of this thesis for scholarly purposes may be granted by the professors who supervised the thesis work recorded here in or, in their absence, by the Head of the Department or the Dean of the College in which the thesis work was done. i s understood that due recognition will be given to the author this thesis and to Ain-Shams University in any use of material in this thesis. Copying or publication or any other use of the thesis for financial gain without approval by Ain-Shams University and the author's written permission is prohibited.

Requests for permission to copy or to make other use of material in this thesis in whole or in part should be addressed to:

Head of the Department of Electrical Power and Machines, Ain-Shams University,

Cairo, Egypt.

ACKNOWLEDGEMENT

The author wishes to express his sincere gratitude to Prof. Dr. Hamdy S. Khalil, Dr. Somaya Afify, and Prof. Dr. Mahmoud El-Bakry for their keen supervision, encouragement, guidance, and valuable suggestions during this work.

The author also likes to thank Power Electronics

Deptartment, Electronics Research Institute, for providing excellent facilities to complete the research.

AIN-SHAMS UNIVERSITY

GTO PWM INVERTER FOR Controlling 3-Phase Induction Motors

Student: S. H. Arafa, Supervisors: Prof. H. S. Khalil

Prof. M. El-Bakry

Dr. S. A. Shehata

M. sc. Thesis presented to Elec. Power and Machines Department

ABSTRACT

The main purpose of this thesis is to design and implement a 3-phase PWM power inverter circuit that can be used to obtain an output voltage with controllable magnitude and frequency to control the speed of induction machines. The complete circuit contains the rectifier, the filter, and the bridge inverter. All these components are constructed. The power inverter uses Gate Turn off Thyristors (GTO) as power switches, which are quite suitable for power applications. The pulse width modulation (PWM) principle is used because of its well known advantages.

New drive and control circuits are developed to be used with the GTO power inverter. The drive circuit produces continuous uniform switching pulses with appropriate specifications for switching the GTO from the unconduction to the conduction state and vice versa. The circuit is simple and uses a smaller number of ICs than many other well known isolated GTO drive circuits. It incorporates good isolation, and self protection against overvoltage and overcurrent. A digital control circuit is also developed that generates three phase sine or square waves and a triangular wave with high

degree of accuracy and in perfect synchronization. It uses mainly two EPROMs (Erasable Programmable Read Only Memory), one for storing the amplitudes of the 3-phase sine wave or wave, and the other for storing the amplitudes of All amplitudes are stored in an triangular wave. unsigned magnitude format. These amplitudes are read by time sharing technique. The circuit excludes the need for sign The drive and control circuits were correction circuits. tested experimentally. The experimental results show that the drive circuit is stable and reliable for both resistive and inductive loads. Also, the experimental results proved the ideal performance of the control circuit. Typical experimental set ups were used to test the GTO as well as the designed inverter circuit. These include the simple DC chopper, single phase inverter, and the 3-phase bridge inverter. All these circuits were loaded with resistive, and inductive loads. In addition, the 3-phase inverter circuit was loaded by a 3-phase induction motor load. Several current and voltage results were recorded and presented in this thesis.

TABLE OF CONTENTS

	Page
COPYRIGHT	I
ACKNOWLEDGEMENT	II
ABSTRACT	III
TABLE OF CONTENTS	V
LIST OF FIGURES	VIII
LIST OF TABLES	XIV
LIST OF SYMBOLS	XV
CHAPTER 1 INTRODUCTION	
1-1 General	1
1-2 Relative Features Of AC Drives And DC Drives	3
1-3 Purpose Of The Thesis	6
CHAPTER 2 SELECTION OF CONTROL STRATEGY FOR	
INDUCTION MOTOR	
2.1 General	7
2.2 Starting Of Induction Motor	8
2.3 Speed Control Of Induction Motor	11
2.4 The Most Common Induction Motor Drives	12
2.5 Inverter Types	17

2.6 The Cycloconverter	21
2.7 PWM Switching Strategies	22
2.8 Three Phase Bridge PWM Inverter	25
CHAPTER 3 CHOICE OF GTO THYRISTORS AS POWER SWITCHS	
FOR INVERTER DRIVE CIRCUITS	
3.1 General	29
3.2 Power Semiconductor Devices Development	30
3.3 The Gate Turn Off Thyristor (GTO)	35
3.4 GTO Turn On Behavior	40
3.5 GTO Turn Off Behavior	44
3.6 GTO Types	46
3.7 GTO Protection	48
3.8 GTO Gate Drive Circuits	49
3.9 Conclusions	57
CHAPTER 4 DESIGN AND IMPLEMENTATION OF A THREE PHASE	
INVERTER USING DIGITAL TECHNIQUES	
4.1 General	60
4.2 The Constructed 3-Phase PWM Inverter	61
4 3 Conclusions	80

4.3 Conclusions

CHAPTER 5 EXPERIMENTAL RESULTS

			
	5.1	General	81
	5.2	Experimental Set-up	81
	5.3	The Control Circuit	86
	5.4	The Drive Circuit	89
	5.5	Testing The Complete System	94
	5.6	Conclusions	100
CHAPTER	6 SI	UMMARY AND CONCLUSIONS	
	6.1	Summary	101
	6.2	Recommendations For Future Work	104
REFEREN	CES		105
APPENDI	K		113

LIST OF FIGURES

Figure		
2.1	Some familiar starting methods of the	9
	induction motor.	
2.2	Stator voltage controlled drive of the	14
	induction motor.	
2.3	Square wave inverter drive of the	14
	induction motor.	
2.4	Current fed inverter drive of the	16
	induction motor.	
2.5	Three phase, three pulse cycloconverter drive	18
2.6	Natural sampling PWM.	24
2.7	Modified natural sampling PWM.	24
2.8	Regular sampling PWM.	24
2.9	Three-phase inverter feeding an induction motor.	26
3.1	Power capabilities of some power semiconductor	
	devices	36
3.2	Symbol of GTO and its two-transistor model.	36
3.3	On state current of the GTO.	39
3.4	Forward current gain as a function of	39
	the anode current.	
3.5	Good triggering condition.	41

VIII

LIST OF FIGURES (Continued)

Figure		Page
3.6	Unlatching trigger	41
3.7	Turn on time as a function of forward	41
	gate current.	
3.8	Ideal turn on and turn off waveforms for a GTO.	41
3.9	Types of conduction pulses.	43
3.10	Cross section of the GTO during the start of	43
	turn off.	
3.11	Cross section of the GTO during the next phase	43
	of turn off.	
3.12	Influence of negative gate voltage on the two	45
	components of turn off time.	
3.13	Cross section of the GTO during the final	45
	phase of turn off.	
3.14	GTO thyristor types.	47
3.15	Snubber circuit of a GTO and voltage change	47
	during turn off.	
3.16	Basic types of gate drive circuit for GTO	50
3.17	Simple direct drive circuit.	52
3.18	MOS-compatible cathode drive circuit.	52
2 10	An included drive circuit.	54

LIST OF FIGURES (Continued)

Figure		Page
3.2	20 Complete auto protecting gate drive	56
	circuit for GTO thyristors.	
3.2	21 An isolated circuit with a wide switching	58
	frequency range.	
4.1	Block diagram of the constructed system	62
4.2	2 The constructed system.	63
4.3	Basic pole schematic diagram.	64
4.4	Proposed digital control circuit.	69
4.5	Stored values of a three phase sine wave	72
4.6	Stord values of a triangular wave	74
4.7	Proposed drive circuit.	76
4.8	Ideal voltage waveform at various points	78
5.1	A photograph of the experimental set up.	82
5.2	Measured output voltage without power filter	84
5.3	Measured output voltage with power filter	84
5.4	4 Outputs of the 4 D/A converters when two zeros	87
	coincide (5V/div., 0.2ms/div.)	
5.5	Outputs of the 4 D/A converters when zero and	
	maximum coincide (5V/div., 0.2ms/div.)	87
5.6	Outputs of the 4 D/A converters when the reference	
	waves are square waves (5V/div., 0.2ms/div.)	87

LIST OF FIGURES (Continued)

Figure	
5.7 PWM signals output when m=12 pulse/cycle	88
(5V/div.,0.2ms/div.).	
5.8 PWM signals output when m=6 pulse/cycle	88
(6 pulses/cycle, 5V/div., 0.2ms/div.).	
5.9 PWM signals output when A=0.8	88
(5V/div., 0.2ms/div.).	
5.10 PWM signals output when A=0.5	90
(5V/div., 0.2ms/div.).	
5.11 PWM signals output when A=1.5	90
(5V/div., 0.2ms/div.).	
5.12 Logic analyzer output (A=0.8 ,m=12)	91
5.13 Logic analyzer output (A=0.8, m=24)	91
5.14 Logic analyzer output (A=0.8, m=48)	92
5.15 Experimental set up for testing drive circuit.	92
5.16 Gate voltage and anode current for the case of	
resistive load (0.2A/div., 20V/div., 0.5ms/div.)	93
5.17 Gate voltage and anode current for the case of	
resistive load (2A/div., 10V/div., 5ms/div.).	93
5.18 Gate voltage and anode current for the case of	
inductive load (0.2A/div., 20V/div., 0.5ms/div.)	93
5.19 The output voltage of a 1-phase inverter for the	
case of resistive load (0.5A/div., 50V/div.,2.5ms/div.)	95