16 NKU 1

DIAGNOSIS AND LOCALIZATION OF THE INTRA_ OCULAR FOREIGN BODIES

THESIS

Submitted in partial fulfilment for

the degree of Master of Science

IN

Oph+halmology

617-7075 K.H

ВΥ

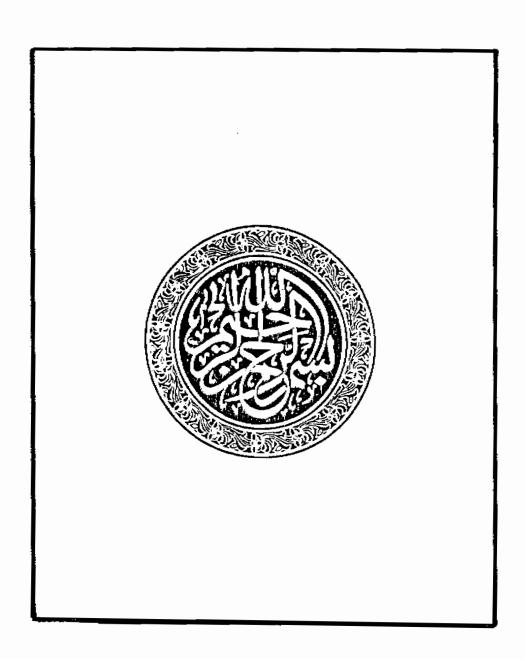
KAMAL MAHMOUD HUSSEIN
M.B.B.Ch,

Supervised By:

27530

PROFESSOR Dr. MOHAMED F. EL MEKKAWY.

Professor of Ophthalmology,


Faculty of Medicine, Ain Shams University.

FACULTY OF MEDICINE,

AIN SHAMS UNIVERSITY

1987

CONTENTS :

-ACKNOWLEGEMENTi				
-LIST OF FIGURESii				
-LIST OF TABLESiii				
-INTRODUCTION1				
Ceneral Consideration about Foreign Body2				
-Magnetic properties2				
-The side involved2				
-The size2				
-The shape3				
-Final position of impaction4				
-METHODS OF DIAGNOSIS AND LOCALIZATION OF INTRAOCULAR BODIES6				
(1)Clinical Methods :6				
-Taking the History :6				
[a] Detailing the accident8				
[b] Describing the object producing the injury8				
[c] Determining the intraocular damage path9				
-Clinical Examination ::9				
[a] Examination under anaesthesia9				
[b] Systematic examination9				
(2)Special Methods :				
-Methods depending on the Magnetisability				
-Methods depending on Electrical Induction 16				

(3)Radiographic Methods :23
-Radiological Detection of Foreign Bodies23
-Radiological Localization of Foreign Bodies25
[1] Direct Methods25
* The Radio-opaque Markers :25
(a) Non-Movable Markers :25
1- Lead Pellets25
2- Silver Wires26
3- Ring of Silver or Steel26
4- Contact Lenses28
5- Markers set at a distance28
(b) Movable Markers :30
[2] Methods depending on Rotation of the Globe32
[3] Methods depending on Geometrical Construction35
(a) Mackenzie's Method and its Modification36
(b) Sweet's Method and its Modification39
(c) Dixon's Method and its Modification42
(d) McGrigor's Method46
[4] Stereoscopic Methods ::48
[5] Localization by Delineation of the Globe :::.49
[6] Bone-Free Methods :51
[7] Multisection Tomography :52
[8] An Improved Photographic Mothed 4 59

(4)Ultrasonographical Methods :59
-Historical Resume :59
-Instrumentation in Ultrasonography61
-Principles of Ophthalmic Ultrasonography71
-Normal Echographic Patterns of the Eye73
-Ultrasound and Intraocular Foreign Bodies :77
[*] Echographic Patterns of Foreign Bodies78
[*] The Accuracy of Diagnostic Ultrasound80
[*] The Value of Ultrasound in the Diagnosis83
-SUMMARY84
-REFERENCES86
-ARABIC SUMMARY

LIST OF FIGURES :

		Page
1	Missile shapes used by Potts and Distler.	1
2	Gerard's Magnetometer.	14
3	Hirschberg's Sideroscope.	14
4	The Berman Locator.	21
5	Roper-Hall Locator.	21
6	Bronson-Turner Locator.	22
7	Sutton's Electroacoustic Locator and Discriminator.	22
8	The Limbal Ring.	29
9	Contact Lenses used as Markers.	29
10	Movable Markers.	31
11	Localization with Movable Markers.	31
12	Idea of Geometrical Construction.(Intraocular F.B.)	34
13	Idea of Geometrical Construction.(Extraocular F.B.)	34
14	Mackenzie Davidson's Cross-Thread Localizer.	37
15	Ramsay's Modification of Mackenzie Method.	37
16	Sweet's Method : The Apparatus in Position.	40
17	Sweet's Method : The plan view and elevation view.	40
18	Sweet's Method : Focal Coordinates.	40
19	Sweet's Method : Localization Chart.	40
20	Sweet's Modified Eye Localizer.	40
21	Bromley's Localizer	1.1.

22	Modified Dixon's Method for Localization.	44	
23	Modified Dixon's Method for Localization.	44	
24	4 McGrigor's Method Localizer: plan and elevation view		
25	McGrigor's Method : The Localizer.	47	
26	McGrigor's Method : Chart for localization in frontal pl.	47	
27	The Apparatus of Computerized Tomography.	5(
28	The Apparatus in Position.	56	
29	Diagrammatic representation of the apparatus.	56	
30	Computerized Tomographic Films.	57	
31	Diagrams of the same Films.	51	
32	Piezoelectric Effect and its Reverse.	63	
33	Transducer Construction.	63	
34	Electronic Processing of Echoes	63	
35	The Oscilloscope (The Cathode Ray Tube).		
36	The three-arms Model for B-Scanning.	6	
37	Basic Idea of B-Scanning.	6	
38	Rotating Transducer.	6	
3 9	Diagrammatic representation of A-scan of the eye.	7:	
40	Normal B-scan Ultrasonogram	7	
41	Normal A-scan Ultrasonogram	7.	
42	Echographic pattern of Metallic Foreign Body	79	
43	Echographic pattern of Metallic Foreign Body	- - 79	

LIST OF TABLES :

		Pago
1	Trauma History Check List.	7

INTRODUCTION

INTRODUCTION:

In all cases of perforating injuries, an intraocular foreign body should be suspected and care is taken to exclude this added complication. The localization of such a foreign body is equally important and needs techniques capable of giving the greatest accuracy; when it is remembered that an inaccuracy of 1 mm may lead to a needless operation on the eye or involve the loss of this organ (Lloyd , 1973).

The majority of intraocular foreign bodies consist of small mettalic fragments which enter the eye during the working of metal in the industries and military communities; and, the problems of these two groups have certain similarities and certain differences (Erkonen, 1972). In both, the incidence will be greater in males between the age of 18 and 40 years (Karlson, 1986). Most of the industrial accidents are, in a sense, self-inflected since they are the results of the patient's own action, wherease, the military injuries are usually the delibrate results of an enemy action (Wright et al, 1975).

However, in the last few years, the fire works injuries have been a field of interest of many ophthalmologists allower the world-centres (Acccella, 1982). Wilson (1982) stated that in the last decade, the rate of injury has nearly triplled with ocular injuries accounting for up to one-third of all cases.

Several great studies have identified these fire works injuries as paricularly dangerous to the eyes; resulting in a high percentages of

contusion injuries , blindness and enucleation (Harris et al , 1983).

General Consideration About Foreign Body:

(1) Magnetic Properties :

Illoyd (1975) stated that in industry, about 90 per cent of foreign bodies are magnetic but, a small proportion consists of nonmagnetic alloys; as brass and copper fragments. Other types of nonmagnetic foreign bodies encountered are lead air-gun pellets and lead shots. Multiple foreign bodies which produce the most difficult localization problems, result from shot-gun injuries or from other forms of explosions. Wood, glass, stone fragments may also be demonstrated depending on their radio-opacity.

(2) The Side Involved:

Bepending on the particular occupation at the time of injury, one or other eye will be relatively exposed and the other is relatively protected by the nose (Paton et al , 1976).

(3) The Size:

Runyan (1975) described that injuries from hammer and chisel, among the industrial cases, form the group with the smallest foreign bodies with an average of 2 mm³ and a range of 0.25 to 9.0 mm³. Other injuries occurring when using a hand hammer show a larger size, but, the largest occurs with machine tool accidents in which the average size is 15.2

Central Library - Ain Shams University

 mm^3 with range from 0.56 to 16.2 mm^3 .

(4) The Shape:

Penetration is most difficult for a blunt tip and least difficult for the knife-shaped tip.

Potts and Distler (1985) studied the way in which the shape of a missile, striking the eye, might affect the ease of penetration of the central cornea. The test objects were made to penetrate many pig!s eyes: restored to normal intraocular pressure by cannulation of the optic nerve and connection of the cannula to a manometric system of physiologic saline. The shape, size and weight of the missiles were carefully controlled. Missiles' speeds were measured photoelectrically; and, for each combination of weight and velocity, penetration of the missile was determined consistently by the point shape.

Figure 1 shows the different shapes of the missiles used by Potts and

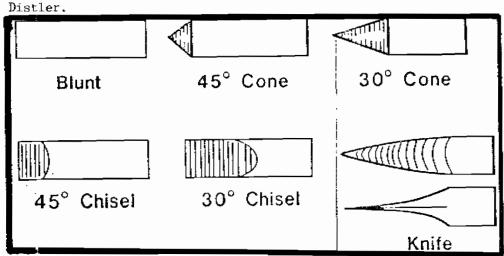


Figure 1: Missile shapes used by Potts and Distler (From their paper, Am J Ophthel, 100: 183, 1985).

(5) The Final Position:

The final position in which a foreign body comes to rest will depend upport the site of entery, the direction of its travel, its momentum and its gravitational force (Davidson, 1968).

Since the vitreous body occupies the greater part of the globe, the majority of foreign bodies which enter the eye will be found in the vitreous; commonly gravitating so that they rest on the retina in the region of the equator (Tolentino et al,1976). Consideration of these points will make it clear that the small foreign body carrying just sufficient momentum to penetrate the cornea, is not likely to be found in the vitreous space; but, it will drop into the angle of the anterior chambre or become embedded in the iris or the lens capsule. On the other hand, large foreign bodies with greater momentum will pass through the lens or through the iris and lens or through the zonule and ciliary processes leaving the lens undamaged. They may become incarcerated in the ciliary body (Tolentino et al, 1976). Murray (1952), in a review of 172 cases of intraocular foreign bodies found that:

- 60 per cent were lodged in the coats of the globe behind the equator,
- 10 per cent in the coats between the equator and the limbus,
- 7 per cent in the ciliary body,
- 10 per cent in the lens, lens capsule or suspensory ligament,
- 4.5 per cent in the iris,
- 2 per cent were mobile in the vitreous, and,
- 6.5 per cent consisted of superficial foreign bodies.

Central Library - Ain Shams University

When localizing the intraocular foreign bodies, it is important to bear these figures in mind so that improbable anatomical localization is not made without very strong radiological evidence.