







# STRUCTURAL ENGINEERING DEPARTMENT FACULTY OF ENGINEERING AIN SHAMS UNIVERSITY

# SEISMIC RESPONSE OF HISTORICAL MASONRY MINARETS

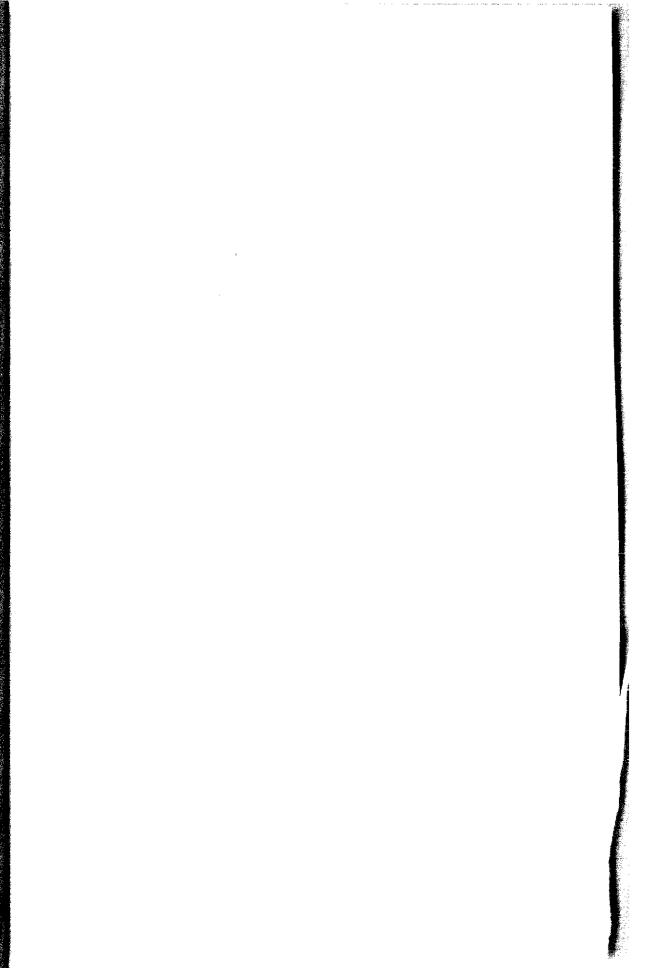
MASTER'S DEGREE THESIS

59618

24.18 Sk.K

Submitted By

Sherif kamal Elwan


B.Sc. Structural Engineering, May, 1991

Thesis Supervisor

Prof. Dr. Amin Saleh Aly



1997



#### **EXAMINERS COMMITTEE**

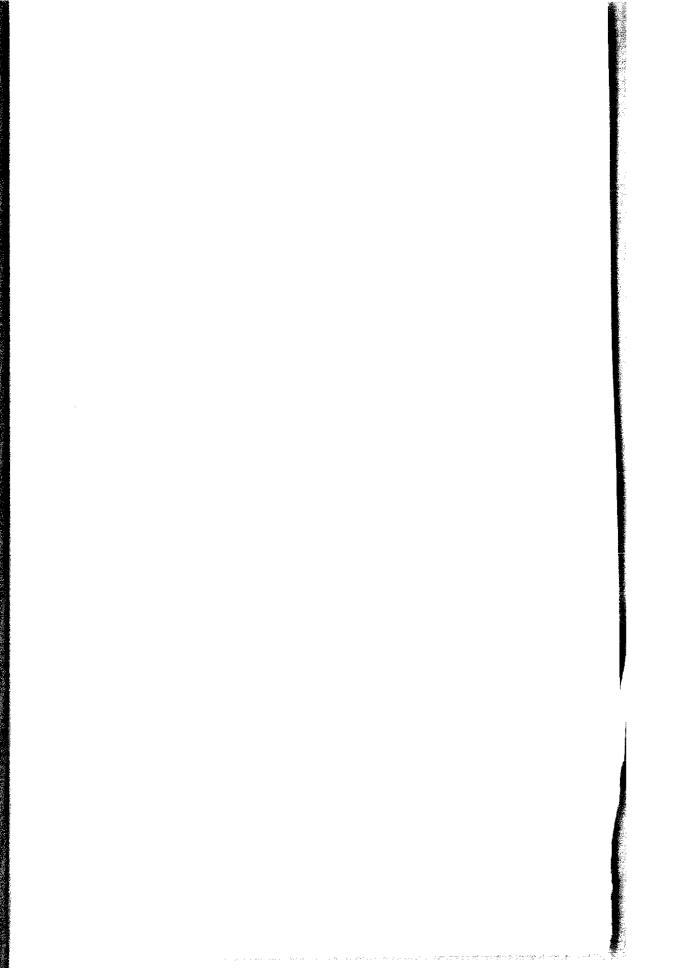
Name, Title, and Affiliation Signature

## 1- Prof. Dr. Mohamed Rasheed Shehata

Professor of Structural Engineering. Alexandria University

M. K.S. Abdelrand

### 2- Prof. Dr. Adel Helmy Salem


Professor of Structural Engineering. Ain Shams University

perpence

### 3- Prof. Dr. Amin Saleh Aly

Professor of Structural Engineering.
Ain Shams University

Jel



#### **STATEMENT**

This dissertation is submitted to Ain Shams University for the degree of master of science in civil engineering (structural).

The work included in this thesis was carried out by the author in the department of civil engineering (structural division), Ain Shams university, from February 1995 to October 1996. No part of the thesis has been submitted for a degree or a qualification at any other university or institution.

Date: .. 6 / .).. / 1997

Name: Sherif Elwan

Signature:

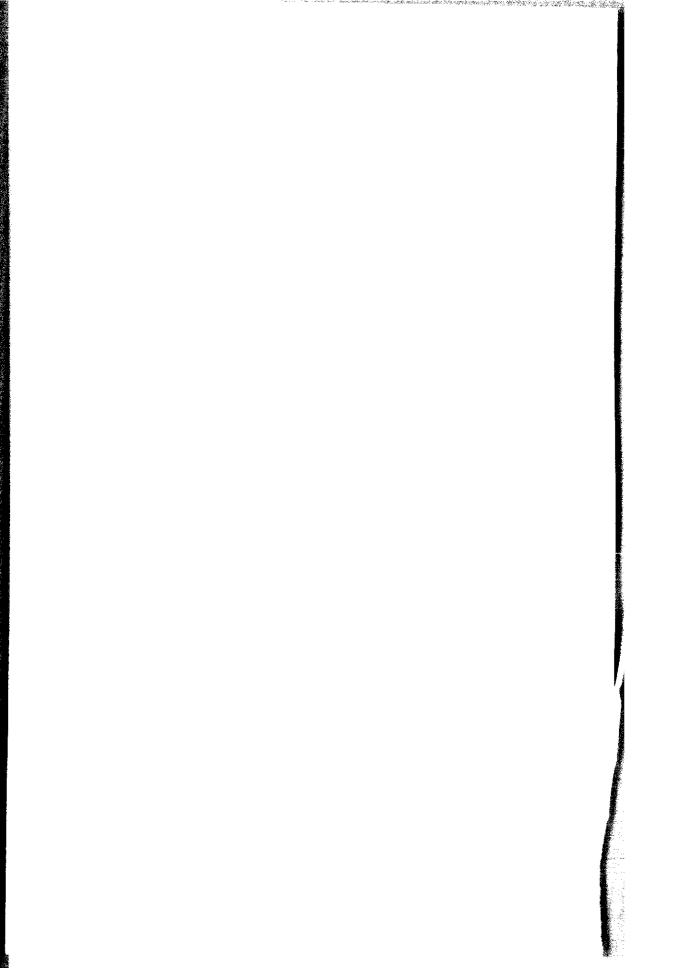
#### **ACKNOWLEDGMENTS**

The writer wishes to express his special thanks and gratitude to Prof. Dr. Amin Saleh Ali, Prof. of Structural Engineering, Ain shams university, for his kind supervision, parental guidance, constructive criticism and generous support which have truly helped in bringing this work to a successful end.

The writer is also grateful to Dr. Essam El- Kordi, Structural Engineering Department, Alexandria university and Eng. Nasr El- Din Mahmoud, senior structural engineer, Arab Contractors Co. for their continuos encouragement, helpful suggestions and generous collaboration.

The writer also wishes to extend his thanks to the staff of the Arab Contractors Co. . for their contributions in the achievement of this research.




#### **CONTENTS**

|                                  | Page      |
|----------------------------------|-----------|
| ACKNOWLEDGEMENTS                 | I         |
| TABLE OF CONTENTS                | II-IV     |
| LIST OF FIGURES                  | V-VII     |
| LIST OF TABLES                   | VIII-IX   |
| ABSTRACT                         | X-XI      |
| NOTATIONS                        | XII-XIV   |
| CHAPTER 1: INTRODUCTION          |           |
| 1.1 General                      | 1-2       |
| 1.2 Literature Review            | 2-3       |
| 1.2.1 Comments                   | 2-3       |
| 1.3 Objectives                   | 3-4       |
| 1.4 Scope and Contents           | 4-5       |
| CHAPTER 2: HISTORICAL BACKGROUND |           |
| 2.1 General                      | 6<br>7.13 |
| 2.2 Architectural Development    | 7-13      |
| 2.2.1 Fatimid Minarets           | 8-9       |
| 2.2.2 Ayyubid Minarets           | 10        |
| 2.2.3 Early Mamluk Minarets      | 10-11     |
| 2.2.4 Qaytbay's Reign Minarets   | 11        |
| 2.2.5 AL-Ghury Reign's Minarets  | 11-12     |
| 2.2.6 Ottoman Minarets           | 12-13     |
| 2.3 Construction Materials       | 13-17     |
| 2.4 Construction Technique       | 17-18     |
| 2.5 Structural Concept           | 18-20     |
| 2.6 Earthquake Excitation        | 20-30     |
| 2.6.1 Size of Earthquake         | 21-23     |
| 2.6.2 Ground Motion              | 24-26     |

| 2.6.3 Seismic Hazard in Egypt                            | 26-30 |
|----------------------------------------------------------|-------|
| 2.7 Seismic Vulnerability of Historical Masonry Minarets | 30-31 |
| 2.8 Damage Survey                                        | 31-33 |
|                                                          |       |
| CHAPTER 3: MODELING AND SIMULATION                       |       |
| 3.1 General                                              | 34    |
| 3.2 Finite Element Method                                | 34-36 |
| 3.3 Selection of Element                                 | 37    |
| 3.4 Properties of Element                                | 37-45 |
| 3.4.1 Material Investigation                             | 38    |
| 3.4.2 Masonry Characteristics                            | 38-42 |
| 3.4.3 Properties of Filling Material                     | 42    |
| 3.4.4 Idealization of Element Section                    | 42-45 |
| 3.5 Soil-Structure Interaction                           | 45-50 |
| 3.5.1 Properties of Soil                                 | 45-46 |
| 3.5.2 Type of Foundation                                 | 46-50 |
| 3.6 Damping Effect                                       | 50-51 |
| 3.7 Adjacent Mosque Effect                               | 52    |
| CHAPTER 4 : METHODS OF ANALYSIS                          |       |
| 4.1 General                                              | 53-54 |
| 4.2 Static Gravity Analysis                              | 55    |
| 4.3 Vibration Mode Shapes and Natural Frequencies        | 55-61 |
| 4.3.1 Inverse Iteration Method                           | 56-57 |
| 4.3.2 Sweeping Procedure                                 | 57-58 |
| 4.3.3 Rumman Approach                                    | 58-59 |
| 4.3.4 Empirical Methods                                  | 59-61 |
| 4.3.4.1 Egyptian Code of Practice for Loads              | 59-60 |
| 4.3.4.2 National Building Code of Canada (NBC)           | 60    |
| 4.3.4.3 Distributed mass and stiffness procedure         | 60    |
| 4.3.4.4 Rayleigh Period                                  | 60-61 |
| .4 Forced Vibration Analysis                             | 62-79 |

| 4.4.1 Governing Equation of Motion             | 62-63   |
|------------------------------------------------|---------|
| 4.4.2 Modal Equations of Motion                | 63-65   |
| 4.4.3 Multi- Modal Response Spectrum Analysis  | 66-70   |
| 4.4.4 Step-by-Step Analysis Procedure          | 70-74   |
| 4.4.5 Equivalent Static Earthquake Procedure   | 74-79   |
| 4.4.5.1 Egyptian Code of Practice For Loads    | 74-76   |
| 4.4.5.2 National Building Code of Canada (NBC) | 76-77   |
| CHAPTER 5: NUMERICAL ANALYSIS                  |         |
| 5.1 General                                    | 80-81   |
| 5.2 Historical and Present Situation Survey    | 82-84   |
| 5.3 Material Investigation                     | 84-85   |
| 5.4 Local Soil Conditions                      | 85-87   |
| 5.5 Proposed Model and Assumptions             | 87-90   |
| 5.6 Mode Shapes and Periods                    | 90-96   |
| 5.6.1 Parametric study                         | 94-96   |
| 5.7 Seismic Response Analysis                  | 96-106  |
| 5.7.1 Parametric Study                         | 105-106 |
| 5.8 Seismic Vulnerability Assessment           | 107-110 |
| <b>CHAPTER 6: SUMMARY AND CONCLUSION</b>       |         |
| 6.1 Summary                                    | 111-115 |
| 6.1.1 Minaret Data                             | 113-114 |
| 6.1.2 Seismic Data                             | 114     |
| 6.1.3 Mathematical Model                       | 114     |
| 6.1.4 Analysis                                 | 114     |
| 6.1.5 Results                                  | 115     |
| 6.2 Conclusion                                 | 115-118 |
| 6.3 Further Studies                            | 118-119 |
| REFERENCES                                     | 120-122 |
| APPENDIX A                                     | 123-125 |
| APPENDIX B                                     | 126-126 |

(大学の大学の大学を表している。 これではないできます。 これには、これには、これには、これには、これには、これできない。



#### LIST OF FIGURES

| No.  | Title                                                   | Page  |
|------|---------------------------------------------------------|-------|
| 2.1  | Roman lighthouses - The pharos of Alexandria.           | 7     |
| 2.1  | The minarets of Al-Hakim.                               | 8     |
|      | The minaret of Al-Juyushi.                              | 9     |
| 2.3  | The minaret of Al- Saleh Najm Al- Din.                  | 10    |
| 2.4  | The minaret of Sanjar Al-Gawli.                         | 10    |
| 2.5  |                                                         | 12    |
| 2.6  | The minaret of Qaytbay.                                 | 12    |
| 2.7  | The minaret of Qanibay Al- Ramah.                       | 13    |
| 2.8  | The minaret of Al- Husayn Shrine.                       | 15    |
| 2.9  | Different arrangement of stone blocks.                  | 16    |
| 2.10 | Types of masonry walls.                                 | 19    |
| 2.11 | Transverses sections of the classic Cairene minarets.   | 19    |
| 2.12 | Direction of seismic waves.                             | 25    |
| 2.13 | Strong motion record- San Fernando Earthquake.          |       |
| 2.14 | Preliminary map of MMI distribution of 1992, Cairo EQ   | . 40  |
| 2.16 | Seismic hazard maps of Egypt according to different     | 29    |
|      | studies                                                 |       |
| 2.17 | Resultant seismic hazard map of Egypt.                  | 29    |
| 2.17 | Seismic activity regions acording to Egyptian code for  | 20    |
|      | loads                                                   | 30    |
| 2.18 | Observed damage patterns during past Earthquakes        | 32    |
| 2.19 | out to the first original minaret in Calro.             | 33    |
|      |                                                         |       |
| 3.1  | Flow diagram of finite element modeling in a dynamic    |       |
| 5.1  | problems.                                               | 36    |
| 3.2  | Typical cross sections of both minaret stool and minare | t     |
| 2, ر | body.                                                   | 38    |
| 3.3  | Verification of masonry wall model under static loadin  | g. 41 |

| 3.4  | Verification of masonry wall model under dynamic loading        | g.42    |
|------|-----------------------------------------------------------------|---------|
| 3.5  | Typical cross section of multiple leaf masonry wall.            | 43      |
| 3.6  | A model for the ultimate strength of a typical cross section    |         |
|      | of the minaret.                                                 | -<br>44 |
| 3.7  | Cumulative model of soil- structure interaction( structure      | • •     |
|      | with fixed base).                                               | 47      |
| 3.8  | Cumulative model of soil- structure interaction(fixed base      |         |
|      | with embedded portion)                                          | 48      |
| 3.9  | Cumulative displacement due to soil-structure interaction.      | 49      |
| 3.10 | Representation of minaret foundation.                           | 50      |
|      |                                                                 |         |
| 4.1  | Representation of symbols for Rayleigh's approximation          | 61      |
| 4.2  | Earthquake excitation of generalized coordinate system          | 62      |
| 4.3  | Multi-degree-of-freedom-system subjected to support motion      | 64      |
| 4.4  | Response spectrum curve- El Centro Earthquake                   | 66      |
| 4.5  | Basic design response spectra curve (Newmark & Hall)            | 64      |
| 4.6  | Design response spectra curve for the Egyptian region-Firm soil |         |
| 4.7  | Design response spectra for Egyptian region-soft soil           | 68      |
| 4.8  | Linear interpolation of ground motion                           | 68      |
| 4.9  | Representation of symbols- Equivalent static analysis           | 76      |
| 4.10 | A typical example of seismic response factor                    | 79      |
| 4.11 | Representation of symbols - Equivalent static analysis(IAEE)    | 79      |
|      | • ()                                                            |         |
| 5.1  | The minaret of Al- Ghury.                                       | 82      |
| 5.2  | Longitudinal and cross sections of Al- Ghury minaret            | 83      |
| 5.3  | General layout of the site and locations of boreholes           | 86      |
| 5.4  | Longitudinal section of borhole No.2 beside the minaret         | 88      |
| 5.5  | Coefficient of lateral subgrade reaction according to Terzaghi  | 89      |
| 5.6  | Cohomostic diagrams Cal                                         | 91      |
| 5.7  | Appalementian amounts Co. 1100                                  | 92      |
| 5.8  | Without in march a C.1. C.1. C.1.                               | 93      |