# DIFFERENTIAL MUTAGENIC SUSCEPTIBILITY OF THE SUSCEPTIBLE AND RESISTANT MALATHION STRAINS OF THE MOSQUITO CULEX PIPIENS TO SOME INSECTICIDES

A thesis

Presented to the Faculty of Science

Ain Shams University

For the Award of the Ph.D Degree

Abd El-Baset B. Zayed

B. Sc. and M. Sc.

Department of Entomology Faculty of Science Ain Shams University Cairo, Egypt 1994



إن الله لا يستحي أن يضرب مثلاً ما بعوضة فما فوقها فأما الذين آمنوا فيعلمون أنه الحق من ربهمر و أما الذين كفروا فيقولون ماذا أراد الله بهذا مثلاً يضل به كثيراً ويهدى به كثيراً ومايضل به إلا الفسقين.

صدق الله العظيمر



| THESIS | EXAMINTION | CCMMITTEE   |
|--------|------------|-------------|
| NAME   | TITLE      | SIGNATURE   |
| •••••  |            |             |
| •••••  | •••••      | •••••       |
|        | *****      | *********** |

#### SUPERVISORE:

PROF. DR. SOAD ABO EL-SOUD EL-SAYED

PROF. DR. SOAD ABO EL-SULD EL-SATELDS
PROF. DR. SAMIRA S. BEXHEET
ASSIS. PROF. DR. A. A. M. AWAD

ASSIS. PROF. DR. NADIA M. ABO GABAL

HEAD OF DEPARTMENT

PROF. DR. BAHIRA M. EL-SAWAF

#### BIOGRAPHY

Date and place of birth : 4 / 4 / 1958, Cairo, Egypt

Date of graduation : May, 1980.

Degrees awarded : - B.Sc. in Entomology, Faculty of Science, Ain Shams

University, Cairo, Egypt.

- M.Sc. in Entamology, 1989, Faculty of Science,

Ain Shams University, Cairo, Egypt.

Occupation : Research Assistant, Research Institute of Medical Entomology.

Date of registration : II / I2/ 1989

for Ph.D degree

#### ACKNOWLEDGMENT

I wish to express my utmost gratitude to Dr. Soad, Abo El-Saud, Prof. of Entomology, Faculty of Science, Ain Shams University for her kind and sincere guidance, support and encouragement. The author is indeed, indebted to Dr. Abo El-Saud for her comments, suggestions and for reading and correcting the manuscript.

Gratitudes are to Dr. Samira S. Bekheet, ex-director of the Research institute of Medical Entomology, for her valuable efforts and for her kind encouragement during the present study.

The author expresses his sincere appreciation to Dr. Abd El-Fatah A. Awad, Assist. Prof. of Genetics, Faculty of Agriculture, Ain Shams University for his encouraging, helpful and kind assistance and support during the present study and for reading and correcting the manuscript.

The loadable effort of Dr. Nadia M. Abo Gabal, Assist. Prof. of Entomology, Faculty of Science, Ain Shams University, throughout the preparation of this thesis, it shard for the author to find the proper words to acknowledge her.

Deep thanks and appreciation are extended to Dr. Kamilia A. Mahmoud, Dr. Azza A. Mostafa and other staff members and colleagues in the Research Institute of Medical Entomology and to the staff members in the Entomology Department, Faculty of Science and Genetics Department, Faculty of Agriculture, Ain Shams University.

#### **ABSTRACT**

The obtained results threw some lights on the induction of dominant lethal, dominant female sterility (either complete or partial sterility) and sex ratio distortion after treatment of the normal and malathion-resistant strains of Culex pipiens with malathion and propoxur. The present study indicated the presence of chromosomal aberration, specially translocation enhanced with meiotic drive factor. The electrophoretic banding patterns of five enzymes ( $\alpha$ -GPDH, MDH, ME, AO, ADH and EST) proved the mutagenicity of malathion and propoxur in the two strains. However, MDH locus can not be affected.

**Key words**: Culex pipiens, Dominant lethal, Female sterility, Sex ratio distortion,  $\alpha$ -GPDH, MDH, ME, AO, ADH, EST, Resistance, Malathion and Propoxur.

#### List of abbreviations used in this thesis

ADH : Alcohol dehydrogenase.

AO : Aldehyde oxidase.

EDTA: Ethylene diamine tetra-acetic acid disodium salt.

EST : Eterase.

FAD : Flavin adenine dinucleotide.

 $\alpha$ -GPDH :  $\alpha$ -Glycerophosphate dehydrogenase.

KH2PO4 : Potasium dihydrogen phosphate.

MDH: Malate dehydrogenase.

ME : Malic enzyme.

Mgcl<sub>2</sub>: Magnesium Chloride.

NAD : Nicotinamide adenine dinucleotide.

NADP : Nicotinamide adenine dinucleotide phosphate.

NBT : Nitro blue tetrazolium.

Na<sub>2</sub>HPO<sub>4</sub>: Sodium monohydrogen phosphate.

PMS: Phenazine methosulphate

Tris : Tris-hydroxy-methyl aminomethane.

Tm : Treatment with malathion.

Tp : Treatment with propoxur.

UT : Untreated.

### List of tables

|       |              |                                                              | page |
|-------|--------------|--------------------------------------------------------------|------|
| Table | 1:           | LC levels (ppm), slope function and resistance level         |      |
|       |              | of malathion and propoxur insecticides of the                |      |
|       |              | normal and resistant strains of Culex pipiens                | 39   |
| Table | 2:           | The biological characters and morphological                  |      |
|       |              | differences between the normal and resistant strains         |      |
|       |              | of Culex pipiens before and after treatment with             |      |
|       |              | malathion and propoxur insecticides                          | 43   |
| Table | <b>3</b> : 7 | The average number of eggs per female (fecundity) of         |      |
|       |              | the normal strain of Culex pipiens after treatment           |      |
|       |              | with malathion and propoxur insecticides                     | 46   |
| Table | 4: 7         | The average number of eggs per female (fecundity) of         |      |
|       |              | the resistant strain of Culex pipiens after treatment        |      |
|       |              | with malathion and propoxur insecticides                     | 49   |
| Table | <b>5</b> :   | The induced dominant lethal in the F <sub>1</sub> generation |      |
|       |              | after the treatment of the normal strain of Culex            |      |
|       |              | pipiens with malathion and propoxur insecticides             | 53   |
| Table | <b>6</b> :   | The induced dominant lethal in the F <sub>1</sub> generation |      |
|       |              | after the treatment of the resistant strain of Culex         |      |
|       |              | pipiens with malathion and propoxur insecticides             | 57   |

| Table | 7:         | The complete and partial sterility induced in the F <sub>1</sub> |
|-------|------------|------------------------------------------------------------------|
|       |            | generation after treatment of the normal strain of               |
|       |            | Culex pipiens with malathion and propoxur                        |
|       |            | insecticides                                                     |
| Table | <b>8</b> : | The complete and partial sterility induced in the F <sub>1</sub> |
|       |            | generation after treatment of the resistant strain of            |
|       |            | Culex pipiens with malathion and propoxur                        |
|       |            | insecticides                                                     |
| Table | <b>9</b> : | The sex ratio of the F <sub>1</sub> generation before and after  |
|       |            | treatment of the normal strain of Culex pipiens                  |
|       |            | with malathion and propoxur insecticides                         |
| Table | 10         | The sex ratio of the F <sub>1</sub> generation before and after  |
|       |            | treatment of the resistant strain of Culex pipiens               |
|       |            | with malathion and propoxur insecticides                         |
| Table | 11:        | The percentages of different genotypes and allelic               |
|       |            | frequencies of $\alpha\text{-GPDH}$ in the adult normal strain   |
|       |            | of Culex pipiens before and after treatment with                 |
|       |            | malathion and propoxur insecticides                              |
| Table | 12         | The intensity of banding patterns of $\alpha$ -GPDH in           |
|       |            | the adult normal and resistant strains of Culex                  |
|       |            | pipiens before and after treatment with malathion                |
|       |            | and propoxur insecticides                                        |

| Table | 13: The percentages of different genotypes and allelic            |
|-------|-------------------------------------------------------------------|
|       | frequencies of $\alpha\text{-GPDH}$ in the adult resistant strain |
|       | of Culex pipiens before and after treatment with                  |
|       | malathion and propoxur insecticides                               |
| Table | 14: The percentage of different genotypes and allelic             |
|       | frequencies of MDH in the adult normal strain of                  |
|       | Culex pipiens before and after treatment with                     |
|       | malathion and propoxur insecticides                               |
| Table | 15: The intensity of banding patterns of MDH in the               |
|       | adult normal and resistant strains of Culex pipiens               |
|       | before and after treatment with malathion and                     |
|       | propoxur insecticides                                             |
| Table | 16: The percentage of different genotypes and allelic             |
|       | frequencies of MDH in the adult resistant strain of               |
|       | Culex pipiens before and after treatment with                     |
|       | malathion and propoxur insecticides                               |
| Table | 17: The percentage of different genotypes and allelic             |
|       | frequencies of ME in the adult normal strain of                   |
|       | Culex pipiens before and after treatment with                     |
|       | malathion and propoxur insecticides                               |
| Table | 18: The intensity of banding patterns of ME in the                |
|       | adult normal and resistant strains of Culex pipiens               |

|       | before and after treatment with malathion and          |
|-------|--------------------------------------------------------|
|       | propoxur insecticides                                  |
| Table | 19: The percentage of different genotypes and allelic  |
|       | frequencies of ME in the adult resistant strain of     |
|       | Culex pipiens before and after treatment with          |
|       | malathion and propoxur insecticides                    |
| Table | 20: The percentage of different genotypes and allelic  |
|       | frequencies of AO in the adult normal strain of        |
|       | Culex pipiens before and after treatment with          |
|       | malathion and propoxur insecticides                    |
| Table | 21: The intensity of banding patterns of AO in the     |
|       | adult normal and resistant strains of Culex pipiens    |
|       | before and after treatment with malathion and          |
|       | propoxur insecticides                                  |
| Table | 22: The percentages of different genotypes and allelic |
|       | frequencies of AO in the adult resistant strain of     |
|       | Culex pipiens before and after treatment with          |
|       | malathion and propoxur insecticides                    |
| Table | 23: The percentage of different genotypes and allelic  |
|       | frequencies of ADH in the adult normal strain of       |
|       | Culex pipiens before and after treatment with          |
|       | malathion and propoxur insecticides                    |

| Table | 24: The intensity of banding patterns of ADH in         |     |
|-------|---------------------------------------------------------|-----|
|       | the adult normal and resistant strains of Culex         |     |
|       | pipiens before and after treatment with malathion       |     |
|       | and propoxur insecticides                               | 120 |
| Table | 25: The percentage of different genotypes and allelic   |     |
|       | frequencies of ADH in the adult resistant strain of     |     |
|       | Culex pipiens before and after treatment with           |     |
|       | malathion and propoxur insecticides                     | 125 |
| Table | 26: The percentage of the genotype and the intensity of |     |
|       | banding patterns of EST in the adult normal and         |     |
|       | resistant strains of Culex pipiens before and after     |     |
|       | treatment with malathion and proposur insecticides      | 130 |

## List of figures

|        |            |                                                                  | page |
|--------|------------|------------------------------------------------------------------|------|
| Figure | 1:         | Ld-p lines of malathion treated 4 <sup>th</sup> instar larvae of |      |
|        |            | normal (NS) and resistant (MR) strains of Culex                  |      |
|        |            | pipiens                                                          | 40   |
| Figure | 2:         | Ld-p lines of propoxur treated 4 <sup>th</sup> instar larvae of  |      |
|        |            | normal (NS) and resistant (MR) strains of Culex                  |      |
|        |            | pipiens                                                          | 41   |
| Figure | 3:         | The average number of the eggs per female of the                 |      |
|        |            | normal strain of Culex pipiens after treatment with              |      |
|        |            | malathion and propoxur insecticides of F1                        |      |
|        |            | generation                                                       | 47   |
| Figure | <b>4</b> : | The average number of the eggs per female of the                 |      |
|        |            | resistant strain of Culex pipiens after treatment                |      |
|        |            | with malathion and propoxur insecticides of F <sub>1</sub>       |      |
|        |            | generation                                                       | 50   |
| Figure | <b>5</b> : | The induced dominant lethal in F <sub>1</sub> generation after   |      |
|        |            | treatment the normal strain of Culex pipiens with                |      |
|        |            | malathion and propoxur insecticides                              | 54   |
| Figure | <b>6</b> : | The induced dominant lethals in F <sub>1</sub> generation after  |      |
|        |            | treatment the resistant strain of Culex pipiens with             |      |
|        |            | malathion and propoxur insecticides                              | 5.8  |

| Figure | 7:  | The complete and partial sterility induced in F <sub>1</sub>    |    |
|--------|-----|-----------------------------------------------------------------|----|
|        |     | generation after treating the normal strain of Culex            |    |
|        |     | pipiens with malathion and propoxur insecticides                | 62 |
| Figure | 8:  | The complete and partial sterility induced in F <sub>1</sub>    |    |
|        |     | generation after treating the resistant strain of               |    |
|        |     | Culex pipiens with malathion and propoxur                       |    |
|        |     | insecticides                                                    | 65 |
| Figure | 9:  | The sex ratio distortion in the $F_1$ of the adult normal       |    |
|        |     | strain of Culex pipiens before and after treatment              |    |
|        |     | with malathion and propoxur insecticides                        | 69 |
| Figure | 10  | The sex ratio distortion in the $F_1$ of the adult              |    |
|        |     | resistant strain of Culex pipiens before and after              |    |
|        |     | treatment with malathion and propoxur insecticides              | 72 |
| Figure | 11: | Histogram represents the frequency distribution of $\alpha$     |    |
|        |     | -GPDH alleles in adult normal strain of Culex                   |    |
|        |     | pipiens before and after treatment with malathion               |    |
|        |     | and propoxur insecticides                                       | 76 |
| Figure | 12: | The electrophoretic banding patterns of $\alpha\text{-GPDH}$ in |    |
|        |     | the adults normal and resistant strains of Culex                |    |
|        |     | pipiens before and after treatment with malathion               |    |
|        |     | and proposur insecticides                                       | 77 |