
THE DETECTION OF BRONCHIAL HYPER-REACTIVITY IN CHILDREN WITH CHRONIC OUGH USING METHACHOLINE CHALLENGE TEST AND PULMONARY FUNCTIONS

"Thesis"

Submitted for partial fulfillment

of

Master degree in Pediatrics

By

Dr. Yasser Ismail Amin Fikry M.B.B.Ch.

"Super

"Supervisors"

Prof. Dr. / Karima Ahmed Abdel Khalek Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. / Mona Moustafa El-Ganzoury

Lecturer of Pediatrics

Faculty of Medicine - Ain Shams University

Dr. / Laila Mahmoud Abdel Ghaffar Lecturer of Pediatrics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University 1994

TO MY PARENTS

AKNOWLEDGMENT

I Thank God,

I wish to express my sincere gratitude and deepest thanks and respect to **Prof. Dr. Karima Ahmed Abdel Khalik, Professor of Pediatrics, Faculty of Medicine, Ain Shams University.**

She provided me with valuable advices and wise supervision through out each and every part of this work.

I also would like to express my endless gratitude, respect and sincere thanks to *Dr. Laila Mahmoud Abdel Ghaffar, lecturer of Pediatrics, Faculty of Medicine, Ain Shams University.* For presenting her kind, exceptional care, support, thus offering me a great and fruitful chance to perfrom this work in proper and complete order, her effort in every page, to whom I am trully indebted.

I would like to thank Dr. Mona Moustafa EL-Ganzoury, lecturer of Pediatrics, Faculty of Medicine, Ain Shams University for her kind care.

I am thankful for the Pulmonary Functions Unit, as it provided me all the facilities to perform my work.

I would like to thank all my colleagues and patients at the Pediatric department at Ain Shams University Hospital.

At Last, I owe much to *Prof. Dr. Swsan Amin EL Sokkary*, *Professor of Pediatrics*, *Faculty of Medicine*, *Ain Shams University*, as she provided me a chance to join her department and learning much, God blesses you all.

CONTENTS

List of Abreviations	
List of Figures	
List of Tables	
Introduction and Aim of work	Page 1
Chapter . 1: Anatomy and Physiology of respiration	Page 3
Chapter . 2: Review of Bronchial asthma	Page 9
Chapter . 3: Review of Chronic cough	Page 65
Chapter . 4: Review of Pulmonary function tests	Page 89
Chapter . 5 : Review of Methacholine provocation test, and methacholine challenge	Page 101
Patients and Methods	
Results	page 116
Discussion	page 159
Summary and Conclusions	page 182
Recommendations	
References	
Arabic Summary	

Abbreviations

BHR Bronchial hyperreactivity

BAL Bronchial alveolar lavage

CAHC Cold - air hyperventilation challenge

CD Cumulative dose

ERV Expiratory reserve volume

FEFR Forced expiratory flow rate

FEF 25 - 75 % Forced expiratory flow at 25 - 75 % of vital capacity

FEV1 Forced expiratory volume in first second

FRC Forced residual capacity

FVC Forced vital capacity

GER Gastroesophageal reflux

IRV Inspiratory reserve volume

MBP Major basic protein

MMEF Maximum mid expiratory flow

FEF25 - 75 Mean Forced expiratory flow during the middle half of FVC

PC 20 Mean provocative concentration causing 20% reduction in FEV1

MCH Methacholine

MIC Methacholine inhalation challenge

PEF Peak expiratory flow

PEFR Peak expiratory flow rate

PPV Percent predicated value

PD20 Provocative dose producing a 20% decrease in FEV1

PFT Pulmonary function test

RSV Respiratory syncytial virus

RV Residual volume

TLC Total lung capacity

TV Tidal volume

VC Vital capacity

List of Figures

Fig. (1): Airway branching in human lung	Page	4
Fig.(2): Morphologic changes in asthma	Page	23
Fig.(3): Mast cell secretogogues	Page	2 7
Fig. (4): Inflammatory cells involved in asthma	Page	32
Fig. (5): Cellular interaction leading to eosinophil infiltration and epithelial injury	. Page	33
Fig. (6): Pathophysiology of bronchial asthma	Page	: 45
Fig. (7): Cough reflex	Page	: 67
Fig. (8): A normal spirogram	page	91
Fig. (9): A standard flow volume graph from an adolescent	. Page	e 95
Fig .(10): Effect of disease state on components of total lung capacity	Page	97
Fig.(11): Comparison of flow volume and volume - time plots in normal versus disease states	ıl Page	98
Fig. (12): Methods for diagnosis asthmatic from non asthmatic patient.	Page	111
Fig.(13): The Med graphics TM spirometry	Page	e 113
Fig.(14): MEFAR 4, electromedical dosimeter MB3	Page	e 113
Fig .(15): Relation between BHR and sex	Page	e 119
Fig .(16): Relation between BHR and type of cough	Pag	e 121
Fig .(17): Relation between BHR and chronic cough of unknown cause	Pag	ge 126
Fig. (18): Relation between BHR and passive smoking	Pag	e 128
Fig. (19): Relation between BHR and different diagnoses of chronic cough .	Pa g	e 134
Fig. (20): Relation between Mean % of FEV1 reduction in BHR position and negative patients	ve Pag	ge 1 3 6

Fig . (21):	Relation between CD of MCH in BHR positive and negative patients	Page	138
Fig. (22)	Relation between CD of MCH and % of FEV1 reduction	Page	139
Fig . (23)	Relation between severity of BHR and cough	Page	149
Fig. (24):	Relation between severity of BHR and smoking	Page	150
Fig . (25):	Relation between severity of BHR and different diagnoses of chronic cough	Page	151
Fig . (26) :	Relation between severity of BHR and type of cough	Page	: 152
Fig. (27):	The spirometry result of MCH provocation of a patient	Page	e 154
Fig. (28)	The spirometry result of MCH provocation of another	Pag	e 150

. * * *

List of Tables

Table . 1 : Schematic table of the bra	nching airways	Page 5
Table . 2 : Both exogenous and endorisk of wheezing in infant:	ogenous factors may increase the s and children	Page 12
Table . 3 : Pathologic changes of ast responsible	hma and mediators possibly	Page 25
Table . 4 : Considerable evidence for (CD4 +) in asthma	r activation of Th lymphocytes	Page 31
Table . 5 : Inflammatory mediators i	n asthma	. Page 38
Table . 6 : Mechanisms of viral indu	ced asthma	Page 40
Table . 7 : Differential diagnosis of	asthma	Page 48
Table . 8 : Staging asthma severity .		Page 50
Table . 9 : Causes of airway disease	or constriction	Page 52
Table . 10: Levels of treatment of b	ronchial asthma	Page 55
Table . 11: Criteria for acceptable	maximal expiratory vital capacity	Page 96
Table . 12 Respiratory parameters Lung diseases	in both obstructive and restrictive	/e Page 99
Table . 13 : Indications of pulmona pediatric asthma	ry function testing associated wit	h Page 99
Table . 14: Drugs influenzing response recommended ideal time and bronchial challenge	onse to bronchial challenge and ne interval between last medication	ons Page 103
Table . 15 : Relation between BHF	R and age	
Table . 16 : Relation between BHF	R and sex	Page 118
Table . 17 : Relation between BHI	R and type of cough	Page 120
Table . 18 : Relation between BHI	R and wheeze	Page 122
Table . 19 : Relation between BH	R and nocturnal cough	Page 123

Table . 20 : Clinical diagnosis as regards causes of chronic cough	Page 124
Table . 21: Relation between BHR and chronic cough of unknown cause	
Table . 22 : Relation between BHR and passive smoking	
Table . 23: Relation between BHR and postnasal discharge	Page 129
Table . 24 : Relation between BHR and chronic sinusitis	Page 130
Table . 25 : Relation between BHR and GER	Page 131
Table . 26 : Relation between BHR and active smoking	
Table . 27 : Relation between BHR and psychogenic cough	Page 133
Table . 28 : Relation between % of FEV1 reduction and BHR	
Table . 29 : Relation between mean CD of MCH and BHR	
Table . 30 : Grading of BHR	
Tables . 31 : Relations between the grades of BHR and different diagno	ses
Table . 32 : Chronic Cough and E.N.T. problems	
Table . 33 : Chronic Cough and GER	
Table. 34 Patient's data	
Table 35 Patient's data as regards the clinical diagnosis of cough	

* * *

Introduction

Bronchial hyper-responsiveness is a condition manifested; by an exaggerated bronchoconstrictor response to many physical changes, chemical and pharmacological agents (*Boushey et al.*, 1980).

Airway hyper-reactivity can be induced or worsened by antigen inhalation, exposure to some chemical irritants and respiratory tract infections (*Dolovich et al.*, 1989).

The degree of hyper-reactivity to histamine or methacholine is directly correlated with the number of mast cells, eosinophils, desquamated epithelial cells and the major basic protein levels. Thus there is a reason to believe that airway hyper-reactivity is an index of the characteristic asthmatic airway inflammation (*Wardlaw et al.*, 1988).

Some individuals with normal spirometric tests do not show a significant bronchodilator response but still have reactive airways, this condition may occur in children with chronic cough, recurrent pneumonia, exercise intolerance, unexplained dyspnea or slow to resolve bronchitis, challenge testing may help to make a diagnosis before committing a child to empiric therapy (*Mueller and Eigen,1992*).

Chronic cough may be the sole manifestation of bronchial asthma (*Niimi et al.*, 1992) and cough resulting from hyper-reactive airway disease is a common clinical disorder that can be treated successfully in nearly all patients (*Corrao*, 1989).

Methacholine challenge is helpful in evaluating children with chronic cough (*Galvez et al.*, 1987). The diagnosis of hyper-reactive airway disease and its association with cough using methacholine test remains a valuable safe diagnostic tool (*Corrao*, 1989).

• Aim of Work:

Is to select patients with hyper-reactive airways among patients complaining of chronic cough before committing a child to an empiric therapy.

ANATOMY & PHYSIOLOGY OF RESPIRATORY SYSTEM

ANATOMY AND PHYSIOLOGY OF THE RESPIRATORY SYSTEM

• ANATAMY OF THE RESPIRATORY SYSTEM:

The respiratory system is divided into upper and Lower airways. The upper airway includes the nose, paranasal sinuses and the pharynx (Behrman and Vaughan, 1987). The lower airway includes the larynx, trachea and its division. The trachea divides into two main bronchi which in turn divide into lober then segmental and subsegmental bronchi, these divide into bronchioles (Phelan et al., 1982). Each bronchial division is called a generation. The airway systematically branch over an average of 23 generations of dichotomous branching ending eventually in blind sac.

The airways from the mouth through the trachea (O \underline{th} generation) to the terminal bronchioles (about $16\underline{th}$ generation) constitute the conducting airways (Fig. 1). They contain no alveoli, do not take part in gas exchange and constitute the anatomical dead space.

The last six to seven generations of these airways are connected to tightly packed alveoli, airway chamber in which gas exchange takes place (*Ewadd and Weibel, 1980*).

The central airways serve the function of conducting air to the gas exchange pareynchyma. The terminal bronchioles divide into respiratory bronchioles with occasional alveoli budding from their wall and finally alveolar ducts which are completely lined by alveoli (17th-23 rd generations). This region is known as the respiratory zone

(Phelan et al., 1982).

Review of Anatomy and Physiology of Respiration