Cryptosporidiosis Among Children Presenting With Summer Diarrhea

Thesis

Submitted in partial fulfillment for

M.Sc. in Pediatrics

Ву

Wafaa Ismail Gazala

M.B. B.Ch.

618.9296 W. I

Supervisors

Prof. Dr.

Maqid Ashraf Abdel Gattah Ibrahim

Professor of Pediatrics

Faculty of Medicine, Ain Shams University

Dr.

Mona Moustafa El-Ganzory

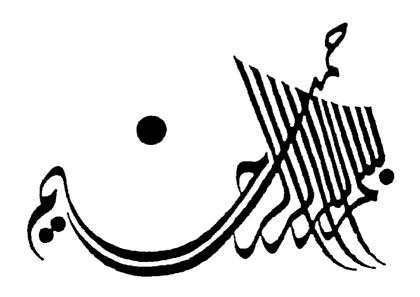
Lecturer of Pediatrics

Faculty of Medicine, Ain Shams University

Dr.

Khalifa El-Sayed Khalifa

Lecturer of Parasitology


Faculty of Medicine, Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY

1997

/W) ~

54:39

مَانُوا سُبِّحُنكَ لَاعُلِمَا إِلَّمَا عَلَيْهِ الْمَاعِظَةُ الْمَاعِظَةُ الْمَاعِظِةُ الْمَاعِظِةُ الْمَاعِظِةُ الْمَاعِظِةُ الْمُعَامِعِينَ الْمُعَامِعِينَ الْمُعَامِعِينَ الْمُعَامِعِينِهِ الْمُعَامِعِينَ الْمُعَلِّينَّ الْمُعَامِعِينَ الْمُعِلَّ الْمُعِلَّ الْمُعِمِعِينَ الْمُعِلَّ الْمُعِلَّ الْمُعِلَّ الْمُعِلَّ الْمُعِلَّ الْمُعِلَّ الْمُعِلَّ الْمُعَامِعِينَا الْمُعِلَّ الْمُعِلَّ الْمُعِلِي الْمُعَامِعِينَ الْمُعِلِمِعِينَ الْمُعَلِّقِينَ الْمُعَلِ

صَمَدَ وَاللَّهُ الْفَالِدُ مِنْ

الآية (٢٢) مسورة المبقرة

Acknowledgement

First, thanks to Allah

I would like to show my sincere gratitude to Prof. Dr. Magid Ashraf Abdel Fattah Ibrahim Prof. of Pediatrics for supervising this work and for his gauidance, kind support, generous effort and valuable advice.

Thanks also to Dr. Mona Mostafa El-Ganzory Lecturer of Pediatrics for her close supervision, her patience and her great effort in this study and continuous support throughout this work.

Also, I wish to thank Dr. Khalifa El-Sayed khalifa Lecturer of Parasitology for his continuous help and meticulous supervision. He spared neither time nor knowledge until the end of this work.

I would like also to express my deepest thanks to Prof. Dr. Magda E. Azab, Prof. and head of Parasitology Lab. for allowing me to use the facilities of her Lab., to excute this work.

Last but not least I would like to thank the patients and every body who shared in this thesis.

LIST OF ABBREVIATION

5 MP : 5 mercaptopurine

ACC : antimicrobial associated colitis

AIDS : Acquired immuno deficiency syndrome.

c AMP : Cyclic adenosine mono phosphate

c GMP : Cyclic guanosine mono phosphate.

C : Cryptosporidium.

DLE : Dialyzable leukocyte extract.

E PEC : Entero pathogenic Escherichia coli.

E. coli : Escherichia coli.

EAEC : Entero adherent Escherichia coli.

EHEC : Entero hemorrhagic Escherichia coli.

ElISA : Enzyme linked immunosorbent assay.

ESR : Erythrocyte sedimentation rate.

ETEC : Entero-toxogenic Escherichia coli

GI : Gastrointestinal

Gr : Group

HIV : Human immunodeficiency virus

HLA : Human leukocyte Antigens

Hr : hour

IBS : Irritable bowel syndrome

ICU : Intensive Care Unit

LIST OF CONTENTS


	Page
INTRODUCTION & AIM OF THE WORK	1
REVIEW OF LITERATURE	
Chapter I: Cryptosporidium	3
Chapter II: Diarrhea	19
SUBJECTS & METHODS	43
RESULTS	55
DISCUSSION	82
RECOMMENDATIONS	93
SUMMARY & CONCLUSION	94
REFERENCES	97
AD ADIC CITAMADV	

LIST OF TABLES

	Page
Table (1): Taxonomic classification of Cryptosporidium	. 3
Table (2): The frequency of human cryptosoporidiosis	
in Egypt	9
3): Persons susciptible to infection with	
Cryptosporidiosis	12
Table (4): Normal infant stool pattern.	20
Table (5): Substances that produce diarrhea through	
second messengers.	24
Table (6): Immunodeficiency affecting the gastrointe-	
stinal tract.	32
Table (7): Age, Sex and feeding habits in the studied	
groups	55
Table (8): The clinical signs and symptoms among	
patients of GI, GII.	56
Table (9): Prevalence of cryptosporidiosis among the	
different studied groups.	57
Table (10): Prevalence of cryptosporidiosis among the	
clinical presentations of GII.	57
Table (11): Comparison between positive and negative	
cases of Cryptosporidium as regards their age	
and sex.	59
Table (12): Cryptosporidium infection in different sex	
and age groups.	60
Table (13): Comparison between positive and negative	
cases of Cryptosporidium as regards feeding	
habit	60

LIST OF FIGURES

	Page
Fig. (1): Life cycle of Cryptosporidium.	5
Fig. (2): A-small intestinal Na ⁺ absorption. B-Intestinal	
Cl- secretion.	24
Fig. (3): Ig A calibrator curve obtained by measuring	
the absorbance of known Ig A standards	50
Fig. (4): Cryptosporidium positivity in various studied	
groups	58
Fig. (5): The type of feeding among Cryptosporidium	
positives in Group I, II.	62
Fig. (6): The clinical signs and symptoms among	
Cryptosporidium positives in Group I, II	64
Fig. (7): The mean duration in days and frequency	
(motion /day) of diarrhea among Cryptospori-	
dium positives in Group I, II	67
Fig. (8): The mean serum Ig A in the studied groups	69
Fig. (9): The mean serum Ig A in Cryptosporidium	
positive and negative patients	71
Fig. (10) Numerous Cryptosporidium oocysts (X 1000	
stained by modified Ziehl-Neelsen technique)	76
Fig. (11) Numerous Cryptosporidium oocysts (X 1000	
stained by modified Ziehl-Neelsen technique)	77
Fig. (12) Few Cryptosporidium oocysts (X 1000	
stained by modified Ziehl-Neelsen Technique)	78
Fig. (13) Cryptosporidium oocysts in stool (X 1000,	
stained by modified Ziehl-Neelsen Technique	79
Fig. (14) Few Cryptosporidium oocysts (X 1000	
stained by modified Ziehl-Neelsen Technique)	80

Introduction & Aim of the Work


INTRODUCTION & AIM OF THE WORK

Diarrheal illness is considered as a major cause of morbidity and mortality, especially in young children living in developing countries [Egger et al., 1990].

Cryptosporidiosis is an important wide spread cause of diarrheal illness in humans and some domesticated animals [Ma and Soave, 1983].

Cryptosporidium is an ubiquitous protozoan that infects the gastrointestinal tract, leading to enteritis. It is likely that Cryptosporidium plays an important role in the overall health status of the children. It may also play a role in respiratory disease that often accompanies diarrheal illness in malnourished children [Egger et al., 1990]. The course of the disease is closely linked to immunocompetence of the host [Flanigan, 1994]. In immunocompetent host it causes acute self limited diarrheal illness in both developed and developing countries [Walfson et al., 1985].

In immunocompromised patients, cryptosporidiosis usually presents as life threatening, prolonged cholera-like illness [Forgacs et al., 1983]. Feco-oral spread among humans and animals and ingestion of contaminated water appear to be the principal modes of transmission, [D'Antonio et al., 1985].

Review of Literature

Chapter I: Cryptosporidium

Biology of Cryptosporidium

Taxonomy:

The taxonomic classification of small intracellular protozoans assigned to genus <u>Cryptosporidium</u> is presented in Table (1).

Levine, [1984] classified <u>Cryptosporidium</u> (C.) into four species; one of those infecting fishes (C. nasorum), repetiles (C. crotali), birds (C. meleagrides) and mammals (C. muris). But Upton and Current (1985) suggested that at least two valid species infect mammals, C. parvum infecting the small intestine and C. muris infecting the stomach.

Table (1): Taxonomic classification of <u>Cryptosporidium</u>.

Classification	Name
Phylum	Apicomplexa
Class	Sporozoasida
Subclass	Coccidiasina
Order	Eucoccidiorida
Suborder	Eimeriorina
Family	Cryptosporidiidae
	[Current and Garcia, 1991].

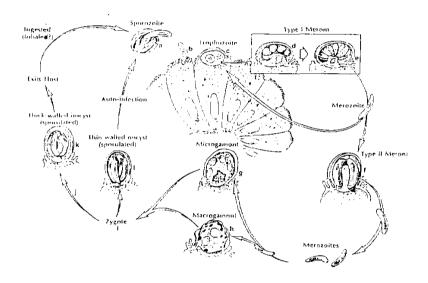


Fig. (1) Life cycle of <u>Cryptosporidium</u> (Quated from: Current and Blagburn, 1990)

countries and 8.5% in developing countries.

The frequency of cryptosporidiosis was shown to be higher in urban areas of Costa Rica [Mata 1988], and Liberia [Hojlyng et al., 1984], where there is closer contact among humans than in rural areas. Symptomatic infection among children is more frequent than in adults, because most adult are immune due to frequent exposure throughout life [Tzipori and Campbell, 1981].

Cryptosporidiosis is commoner among children 6-12 months old and decreases with age towards 2 years [Taylor et al., 1985]. It is less common in neonates compared with infants of 6 months or older [Mata, 1986], because of protection by maternal antibodies resulting from the mother's own frequent exposure. The youngest child reported with cryptosporidiosis was a three days old infant born to a mother who had had diarrhea due to cryptosporidiosis several days before vaginal delivery [Bossen and Britt, 1985]. Several studies revealed that breast fed infant rarely catch cyrptosporidiosis [Fayer et al., 1986]. In contrast to this, other studies showed no difference between breast-fed and bottle- fed infants [Mathan et al., 1985].

Infections are often seasonal, with a higher prevalence during warmer and wetter months, but a distinct seasonal trend was not observed in all countries. For instance, in United Kingdom and India no seasonal variations was documented [Casemore et al., 1985; and Mathan et al., 1985].

A number of water-borne outbreaks have been

) algib i	A. 1110 110	Table (*/: The requested of manner of prescription — = = = = = = = = = = = = = = = = = =	(6	
Location	Tested number	% of patients	Age & peak season	Asymptonatic carriage	Reference
1- Cairo	117	2.65%	Children immunosuppressed + immunocompetent	0	Azab et al., 1985
2- Zagazig	80	8.75%	> 50% children	0	Aboul-Maged & Abou Shady, 1986
3- Cairo	400	0	No data	0	Salem et al., 1987
4- Cairo	No data	4.30%	No data	0	Nour et al., 1988
5- Egypt	151	%6	Mean age 18 month	0	Mithail et al., 1989
6- Cairo	460	6.80%	Children, all year	ю	Fayyad et al., 1989
7- Qalubyia	213	3.20%	Children and infant	0	Khashaba et al., 1989
8- Alexandria	150	4.50%	Children, spring and summer	0	Abdel-Moneim et al., 1989
9- Cairo	180	20.50%	Age 2-30 month	0	Mohsen et al., 1991
10- Cairo	196	18.90%	Children	2.20%	Ibrahim et al., 1995