77176

STUDY OF SOME PHYSICAL PHENOMENA ON THE SURFACE OF SOLIDS

THESIS

Submitted for the Degree of DOCTOR OF PHILOSOPHY

in

PHYSICS

Presented by

KAMEL MOHAMED EL-SHOKROFY

M. Sc. in Physics Faculty of Engineering

Menoufia University

For The Degree of Ph. D. to The Faculty of Science Ain Shams University Cairo

1985

ACKNOWLEDGEMENTS

I wish to express my sincere thanks to Professor Hassan Talaat for his continual supervision and encouragement throughout the years I have worked with him, and who has a given support, and direction to my work, and has made it known to me that in his eyes I am succeeding in becoming a good physicist.

I would like to thank Prof. Dr. Abdel Aziz Ali, Head of the Physics Department, and I would also like to thank Prof. Dr. Mandouh El-Mosli for his critical reading of this thesis.

Part of the experimental work has been carried out at the Laboratory for Research on the Structure of Matter at the University of Pennsylvania, Philadelphia, Pennsylvania, USA, in the Laboratory of Professor E. Burstein. So, I would like to express a large amount of gratitude and admiration for Professor Elias Burstein for giving me the benefit of his vast experience and encouragement. His group cooperation made this work possible, particularly Dr. George Ritchie who helped me greately with my experimental work.

I would like to thank Mrs. Soheir Negm for her generous assistance and her contributions.

Finally, I want to thank my wife, without her understanding and her patience, this work would not have been easy. It is to my father's memory that this thesis is dedicated.

CONTENTS

	Page
ABSTRACT	i
CHAPTER (1) INTRODUCTION	1
CHAPTER (2) THEORETICAL REVIEW	7
2.1 Raman Scattering Process	7
2.2 Surface Enhanced Raman Scattering	13
2.2.1 Introduction and Historical Background	13
2.2.2 Review of the Existing Theories	15
2.2.3 Electromagnetic Effects	16
I. Single-Particle Resonances	17
II. Collective Resonances	20
<pre>III. Resonances on Grating, Rough Surface, and by Attenuated Total Reflection</pre>	23
IV. Summary	25
2.2.4 Other Theories	26
2.2.5 Quantum Effect	29
I. The Image Field Model	30
II. Charge-Transfer Model	32
III. Electron-Hole Excitation Model	35
CHAPTER (3) THE ROLE OF SURFACE ROUGHNESS	42
1. Properties of Metal Island Films	43
2 Field Enhangements at Cilver Teland Films	45

	,	Page
	pherical Particle in a Uniform External ield	46
2.2 E	llipsoidal Particles	50
	he Field Enhancement due to the Inter- ction between Metal Particles	55
	he Amplification Factors at Certain ites (a,b)	57
CHAPTER (4) THE DYE: CRYSTAL VIOLET	61
CHAPTER (5) ABSORPTION MEASUREMENT	67
1. Int	roduction	67
2. Exp	erimental Procedures	68
2.1	Metal Island Films Substrate	68
2.2	The Dye (Crystal Violet	70
3. Abso	orption Measurement	71
4. Res	ults and Discussions	72
CHAPTER (6) EXPERIMENTAL MEASUREMENTS OF SERS	85
Introdu	ction	85
1. Ram	an Spectra of cv on Glass	89
	an Spectra of cv Adsorbed on Ag Island	90
2 a.	The Raman Spectra of cv on Different Thickness of Ag Island Films	90
2b.	Raman Spectra with Different Excitation Wavelength	94
2c.	Results for Raman Spectra for Different Thickness and Different Excitation Wavelength	100

	Page
3. Raman Spectra of cv Deposited on Ag and Au Island Films	112
4. Raman Spectra of cv Deposited on Smooth Metal Surface	122
CHAPTER (7) CONCLUDING REMARKS	128

ABSTRACT

Surface Enhanced Raman Scattering (SERS) of adsorbed molecules of crystal violet (cv) on metal films has been studied. The metal films were silver and gold and of ultrathin thickness to form islands (rough) or of large thickness to form "smooth" surface. The absorption spectra of the bare metal island films as well as the cv coated metal island films were obtained and correlated to the excitation spectra of the surface enhanced Raman vibrational lines. The excitation of the transverse collective electron resonance (localized plasmons), by the incident electromagnetic radiation, has been shown to increase the local field at the adsorbed molecule sites that enhances the absorption and the Raman scattering cross section. The data obtained on the surface enhanced Raman scattering of the adsorbed molecules are in agreement with existing theories of the enhancement phenomena that deal with the nature and structure of the metal substrate and its interaction with adsorbed molecules. We have been able to obtain an estimate of the contribution of the surface roughness to the enhancement process.

CHAPTER I

INTRODUCTION

CHAPTER I

INTRODUCTION

Raman spectroscopy has become one of the most valuable tools for the vibrational spectroscopic study of materials particularly after the introduction of lasers. Among other vibrational spectroscopic techniques like infrared transmission (1) or reflection spectroscopy (2), high resolution electron energy loss spectroscopy (3), inelastic electron tunnelling spectroscopy (4), Raman spectroscopy offers several advantages. These include a standard resolution better than 4 cm⁻¹, a free spectral range from about 20-5000 cm⁻¹, and in surface Raman spectroscopy (SRS) (5,6) the possibility to observe adsorbates in situ and at interfaces.

Raman studies are typically performed with laser beams focussed to 5×10^{-3} cm², for ordinary Raman scattering one usually has something like 10^{15} scattering molecules in the beam cross section. A monolayer on a smooth surface contains on the order of 10^{12} molecules in that area, so the scattered radiation would not be intense enough to be seen. Consequently, it was assumed that it would be impossible to detect the Raman lines in scattering by monolayers and that constituted a major drawback due to the low sensitivity of the method. The difficulty of observing a

monolayers were overcome by the discovery in 1977 of surface enhanced Raman scattering (SERS) phenomena where Raman scattering cross section for pyridine molecules adsorbed on Ag electrodes that have been roughened in an electrochemical cell were enhanced by about of factor of 10°. Since then there has been great research efforts devoted to the study of this phenomena. SERS is not confined to the electrode-electrolyte interface, it has been observed for many molecular species (e.g. pyridine, pyrazine, isonicotinic acid, benzoic acid, etc.) adsorbed on various metals (e.g. Ag, Cu and Au) by various procedures (e.g. electrochemical and chemical deposition from solution, vapour deposition in high vacuum) using continuous and discontinuous (island) evaporated films and colloidal particles or mechanically polished polycrystalline Aq (7). It is generally agreed that the roughness is a necessary condition for SERS.

The current research efforts are aimed to ascertain the macroscopic and microscopic mechanisms responsible for the enormous enhancement in the Raman scattering process. In this thesis we study the enhancement of Raman scattering by molecules adsorbed on metals. We focus our attentions on dye molecules (crystal violet molecules) adsorbed on noble metal island films to elucidate the role of surface roughness and in particular, the role played by the collective

electron resonance (e.g. localized plasmons) of the short range structure of the metal island films.

Current theories show that the enhancement of the Raman scattering by molecules adsorbed on metal island films is due to in part to the sizable increase in the effective electric field at the sites of adsorbed molecules when the transverse collective electron resonance is resonantly excited by the incident EM radiation, and in part to the large electric dipole moment for scattered radiation that are induced in the metal islands by the Raman excited molecules.

In this work, we have experimentally investigated these effects on the enhancement of Raman scattering of cv adsorbed on Ag and Au island films. The use of the two metals have allowed us to investigate other theoretical results that indicate the dependence of the enhancement on the nature of the metal substrate, e.g., the imaginary part of the dielectric constant of the metal substrate. Furthermore, we have also studied Raman scattering of adsorbed cv molecules on smooth metal films to obtain an estimates of the contribution of the roughness to the enhancements of the scattering cross section.

In addition, we have studied the optical absorption of our systems in order to farther our understanding of the factors responsible for the enhancement mechanisms. First, we studied the optical absorption of the bare island film, and then island films coated with the dye monolayers. The data for the bare island films indicate an absorption due to the excitation of the localized plasmons, and the data for the coated films show that the absorption is not simple superposition of the absorption of the island films and the dye due to the interaction of the dye molecules with the metal particles.

The excitation spectra (the variation of the intensity of the surface enhanced Raman vibrational lines with the incident radiation wavelength) show a similar structure to that of the absorption spectra in the region of wavelengths corresponding to the excitation of the transverse collective electron resonance. In addition, there is a large increase in the intensity that correspond to the regular resonance Raman scattering of the molecules.

In Chapter (2), we present a brief review of the existing theoretical models for the enhancement of Raman scattering of molecules adsorbed on metal surfaces.

In Chapter (3), we present the role of surface roughness which includes expressions for the enhancement factors of the incident and scattered radiation fields.

In Chapter (4), the absorption and characteristic of crystal violet are presented.

In Chapter (5), the data on the absorption of the bare island films and the island films coated with the dye molecules as well as a discussion of the interaction of the adsorbate with the metal particles are presented.

In Chapter (6), the spectra for the surface enhanced Raman scattering of the crystal violet adsorbed on glass, metal island films and thick and smooth, Ag and Au films are presented. This is followed by a discussion of the excitation spectra and the effects of the nature of the metal substrate and the cv molecules interaction with the substrate.

In Chapter (7), the concluding remarks of our work are presented.

REFERENCES

- (1) M.L. Hair, "Infrared spectroscopy in surface chemistry", Marcel Dekker, New York, 1967.
- (2) H.J. Krebs and H. Luth; Appl. Phys. 14 (1977) 337.
- (3) H. Ibach, M. Hopster and B. Sexton; Appl. Phys. 14 (1977) 21.
- (4) J. Kirtley, D.J. Scalapino and P.K. Hansma, Phys. Rev. B 14 (1976) 3177.
- (5) Y.J. Chen, W.P. Chen and E. Burstein, Phys. Rev. Lett. 36 (1976) 1207.
- (6) M. Fleischmann, P.J. Hendra, and A. McQuillan, J. Chem. Phys. Lell. 26 (1974) 163.
- (7) A. Otto, Surface Science 75 (1978) L392.

CHAPTER 2

THEORETICAL REVIEW

- 2.1 Raman Scattering Processes
- 2.2 Surface Enhanced Raman Scattering Processes