JUNELE

EFFECT OF FINE GRAINED SOIL (SILT) CONTENTS ON THE BEHAVIOUR OF SANDY SOIL

By Mahmoud Soheir Ahmed Mansour

A Thesis Presented to Ain-Shams University
in Application for the Degree of
Master of Science

In
CIVIL ENGINEERING

624.1514 5. A

20564

Under Supervision of

Prof. Dr. Abdelmonem A. Moussa Ass. Prof. Dr. Farouk El-Kadi Lecturer, Dr. Salah El Okdah

1985

AKNOWLEDGEMENT

The main part of this work was carried out under the direct supervision of Prof. Dr. Abdelmonem A. Moussa, Professor of Soil Mechanics and Foundations, and Dr. Salah El Okdah, Lecturer in Soil Mechanics and Foundations, Faculty of Engineering, Ain-Shams University.

The final stage of the preparations of this work was carried out under the supervision of Dr. Farouk El-Kadi, Associate Prof. of Soil Mechanics and Foundations, because Dr. Moussa's leave to Qatar University.

I am deeply indebted to Prof. Dr. Moussa for his help, guidance and invaluable advice throughout the research programme.

Gratful thanks are due to Dr. El-Kadi and Dr. El-Okdah for their help, valuable guidance and advice.

I also wish to express my thanks to the Technicians of the Soil Mechanics and Foundations Laboratory, Ain-Shams University for their help.

CONTENTS

	Page
Acknowledgement	i
Contents	ii
Notations	χ i
Introduction	1
CHAPTER I: Historical Review	
A. Shear Strength	2
A.1. Types of deformation	2
A.1.1. Recoverable deformation	2
A.1.2. Irrecoverable deformation	2
A.2. Shear strength of sandy soil	3
A.2.1. Effect of density on shear strength of sand	4
A.2.2. Physical properties	11
A.2.2.1. Grading and angularity	13
A.2.2.2. Effect of grain size distribution	18
A.2.3. Effect of loading condition	20
A.2.3.1. Rate of loading	20
A.2.3.2. Vibration and repeated loading	20
A.2.3.3. Intermediate principal stress	21
A.2.4. Effect of normal stress	26
A.2.5. Effect of confining stress	27
4.2.6. The effect of fine grained soil contents	32

6

		Page
A.2.7.	Effect of bond between particles on shear	
	strength of sandy soil	33
A.2.8.	Effect of stress history	35
A.2.9.	Effect of end restraint	40
В.	Permeability	45
B.1.	Darcy and Ritter	45
B.2.	Seelheim	46
в.3.	Hazzen	47
B.4.	Slichter	47
B.5.	Terzaghi	48
в.6.	Kozeny	48
B.7.	Rose	49
в.8.	Louden	50
в.9.	Carman	52
B.10.	Skhmid	52
B.11.	Verdeyen and Nuyens	54
B.12.	Krishnan	55
B.13.	Moussa	57
B.14.	Mohamed	58
B.15.	Discussion and conclusion	. 59
CHAPTER	II: Material, Equipment and Test Programm	
2.1.	The properties of the tested soils	62
2.2.	Triaxial compression apparatus	64
2.3.	Preparation of sample	64

		Page
2.4.	Loading procedure	68
2.5.	Influence of end restraint	69
2.6.	Loading system	74
	- The axial load	74
	- The cell pressure	74
2.7.	Computations of permeability	7 5
2.8.	Test programme	75
CHAPTER	<pre>III: Discussion of Triaxial Compression Test Results :</pre>	
3.1.	Relationship between shear shear strenth	
	and normal effective stress	77
3.1.1	. Clean sand	77
3.1.2	. Sand mixed with fines	79
3.2.	Relationship between percentage of fines	
	and the angle of shearing resistance	7 9
3.3	Relationship between percentage of fines	
	and shear constant	84
3.4.	Effect of percentage of fines and degree	!
	of compaction on shear strength	89
3.4.1	.Parameter B ₁	94
3.4.2	.Parameter A	95
CHAPTER	IV: Permeability (Discussion of Test	
	Results)	107
SUMMARY	AND CONCLUSSION	1 15
REFEREN	CES	117
APPENDI	x :	
I-	Compaction test results	124
IT-	Triaxial compression test results 1	25-14

List of Figures

Figure		Page
1-	Comparison of the angle of internal friction observed in drained and undrained tests, (After Bjerrum, et al., 1961)	6
2 -	Friction angle versus intial void ratio for medium sand (After Row , 1962)	7
3-	Relationship between log \mathcal{T} and log σ_n for all the tested sand, (After Moussa, 1967)	9
4-	Relationship between 7 and 7 (After Moussa, 1967)	10
5 -	Intrinsic curve in $(\sigma_1 - \sigma_3) - (\sigma_1 + \sigma_3)$ diagram, (After Hansen, 1967)	12
6-	Effect of gradation on friction angle, (After Leslie, 1963)	15
7a-	Sieve analysis, (After Bishop, 1948)	16
7b-	Relationship of angle of internal friction to porosity for various grading, (After Bishop, 1948)	16
8-	Friction angle versus confining pressure (After Leslie, 1963)	17
9 -	Grain size distribution (After Jakobson, 1971)	19
10-	Stress path for triaxial test (Lamp and Whitman, 1968)	22

Figure		Page
11-	Stress strain data for both compression and extension loading (Lamp and Whitman, 1968)	2 3
12-	Strength of Brasted sand in triaxial compression tests (After Cornforth, 1964)	24
13-	Effective angle of internal friction and initial relative density for chattahoochee and in drained shear (After Al Hussani, 1973)	25
14-	The initial sections of curves showing the relationship between shear resistance and normal pressure (After Yaroshenko, 1964)	28
15-	Stress-strain data for various loading condition (Lamp and Whitman, 1968)	30
16-	Strength line for cemented granular soil	34
17-	Results of compression tests on saturated samples (After Bishop and El Din 1953)	38
18-	Results of compression tests on dry samples (After Bishop and El Din, 1953)	3 9
19-	Results of extension curves on saturated samples (After Bishop and El Din, 1953)	41
20-	Influence of height to diameter ratio on the strength of samples having various degrees of end restraint, (After Bishop and	
	Greeny, 1965)	42
21 -	Grain size distribution for the tested sand	63
22-	Grain size distribution for the tested silt	63

Figure Pag		
23-	Preparation soil sample for testing	67
24 -	Typical multistage triaxial compression test result, sample No. IX	70
25A-	The effect of end restraint on the cross-	
	sectional area of a test specimen	7 2
25B -	The effect of end restraint on the deformation of a test specimen	72
26 -	Relationship between and $_{\rm n}$ for clean sand	78
27-	The angle of shearing resistance against the corresponding values of percentage of fines	80
28-	Relationship between parameter a ₁ and degree of compaction	82
29 -	The shear constanct C versus the percentage of fines at different degrees of compaction	85
30 -	Relationship between log F - log C	8.6
31-	Relationship between parameter a_2 or a_3 and the degree of compaction	88
32 -	Shear strength against percentage of fines F at D_c = 90 %	90
33-	Shear strength against percentage of fines F at D_c = 95 %	91
34-	The shear strength against the corresponding value of percentage of fines F at D_c = 100 %	92
35 -	The shear strength against the corresponding values of percentage of fines F at D_c = 105 %	93
36 -	Relationship between the mean values of	

parameter \mathbf{B}_{1} and the degree of compaction

97

//

Figure		Page
47-	The shear strength versus the normal effective stress at F = 15 %	106
48-	The shear strength versus the normal effective stress at F = 20%	106
49-	The coefficient of permeability against the corresponding values of percentage of fines	110
5 0-	Relationship between parameter \mathbf{E}_{1} and the degree of compaction	111
5 1-	Percentage decrease in coefficient of permeability against the percentage of fines	113

13

List of Tables

Tabl	.e	Page
1-	Effect of angularity and grading on peak friction angle	18
2 -	Percentages of silt in tested samples	65
3 -	The properties of the tested samples	65
4-	Test programm	76
5 -	Parameter a ₁ and b ₁	8 1
6-	C - F relationship parameters (a ₂ , b ₂ , a ₃ , b ₃)	87
7-	Parameter B ₁	94
8-	Parameter A ₁	95
9-	Parameters m and n	96
10-	The value of coefficient of permeability	108
11-	Parameters E ₁ and E ₂	108

Notations

A 1	Parameter in equation (38)
^B 1	Parameter in equation (38)
a ₁ , b ₁	Parameters in equation (25)
a ₂ , b ₂	Parameters in equation (30)
a ₃ , b ₃	Parameters in equation (31)
E ₁ , E ₂	Parameters in equation (43)
D _c (%)	Degree of compaction
е	Void ratio
e _i	Initial void ratio
e _{max}	Matimum void ratio
e _{min}	Minimum void ratio
F (%)	Percentage of fines
K (cm/sec)	Coefficient of permeability
m	Parameter in equation (40)
n	Parameter in equation (40)
ζ (kg/cm ²)	Shear strength
$\sigma_{\overline{n}} (kg/cm^2)$	Normal effective stress
\$	Angle of shearing resistance
C (kg/cm ²)	Shear constant
٤(%)	Vertical strain at failure
Ydry(gm/cm ³) Dry density
$Y_{d_{\max}}$	Dry density of soil in densest condition

INTRODUCTION

1

In nature, sand may be found mixed with fines such as silt and clay. Previous studies on sand indicated that proper attention was mainly given to clean sand. In natural sand deposits, it is very often to find sand containing different percentages of fine grained soils or lime. The failure of sandy soil is due to many reasons. One of them is the contained fines which reduce the resistance of sandy soil against shear stress.

The purpose of the present work is to study the effect of silt content on the shear strength and permeability of sand. Accordingly, triaxial compression and permeability tests are carried out on laboratory prepared samples of clean sand mixed with variable percentages of silt. It could be possible to find out imperical relationships between the shear strength, the normal stress and the percentage of silt. Also it could be possible to find out imperical relationships between the permeability, the percentage of fines and the degree of compaction.

CHAPTER I

HISTORICAL REVIEW

A- Shear Strength

A. 1. Types of deformation

Deformation of dry sand subjected to stresses can be distinguished into two categories: recoverable and irrecoverable strains. The relative importance of each depends mainly on the applied stress system, the properties of sand and the degree of confinement of the soil.

A.1.1. Recoverable deformation

Recoverable deformation is governed to an appreciable degree by:

- The compressibility of mineral grains of which it is composed (Taylor, 1948).
- Particle shape and geometry of packing (El-Sohby, 1964).

A.1.2. Irrecoverable deformation

Irrecoverable deformation is mainly due to sliding between particles and particle crushing.

The sliding is due to the relative movement between the particles of sand mass subjected to stress. The applied