SEISMIC MICROZONING STUDY AND ITS APPLICATIONS IN EGYPT

A THESIS

Submitted to

The Faculty Of Science

Ain Shams University

in fulfillment

Of The Degree Of Doctor Of Philosophy

351. 27 fr. 1.

(Ph. D)

In Geophysics

Ву

ABUO EL ELA AMIN MOHAMED

(B. Sc., M. Sc.)

Faculty Of Science

Ain Shams University

1994

TO MY MOTHER AND THE MEMORY OF MY FATHER

TO MY WIFE AND MY DAUGHTERS AYA AND ALAA

ACKNOWLEDGEMENTS

First, I have this opportunity to congratulate Prof. Dr A. M. Sabry, Head Department Of Geophysics, Faculty Of Science, Ain Shams University and all the staff members for the establishment of the Department.

I wish to express my gratitude and deep appreciation to Prof. Dr. Mahdy Abd El Rahman, Professor of geophysics, faculty of Science, Ain Shams University, for his supervision, follow up, valuable guidance and encouragement during this study.

I would like to express my deepest gratitude and thankfulness to Dr. Mohamed M. Dessokey, Assist. Professor of seismology, National Research Institute Of Astronomy and Geophysics for his supervision, follow up, explanation, encouragement, scientific discussion and made many valuable suggestions during this study.

I would like to express my sincere thanks to Dr. Imam A. Marzouk, lecturer of seismology, National Research Institute Of Astronomy and Geophysics for supervision, encouragement and guiding the field work around the greater Cairo area during this study. I would like to express my sincere thanks to Dr. Abd El Naser M. Helal, lecturer of Geophysics, Faculty Of Science, Cairo University for supervision and encouragement.

Last but not least my thanks are due to my family who gave me a great power during this study.

CONTENTS

PAGE ACKNOWLEDGEMENTS ABSTRACT LIST OF FIGURES LIST OF TABLES INTRODUCTION..... 1 Seismicity Of Egypt..... 9 1.1 Geography Of Egypt..... 11 1.2 Geology Of Egypt..... 12 1.3 Seismicity Of The Greater Cairo Area........... 18 1.4 Geography Of The Greater Cairo Area..... 18 1.5 1.6 1.6.1. The Cultivated Valley...... 19 1.6.3. The Western Side..... 21 CHAPTER II..... SEISMIC INTERPRETATION OF SHALLOW REFRACTION MEASUREMENTS Generation and Detection Of Seismic Waves..... 27 2.1 2.2 Recording System..... 27 2.3 Description Of Seismic Profiles..... 32 Interpretation Of Seismic Refraction Records...... 33 2.4 Estimation Of Kinetic Elastic Moduli..... 35 2.5 Data And Results..... 36 2.6

Paç	јe
2.6.1. El-Zeitoun Site	
2.6.2. Kobri El-Kobba Site	
2.6.3. El-Matariya Site	
2.6.4. Ghamra Site	
2.6.5. Shubra Site	
2.6.6. Ramses Site	
2.6.7. El-Tahrir Site	
2.6.8. El-Gezira Site	
2.6.9. El-Dokki Site	
2.6.10. Imbaba Site	
2.6.11. El-Giza Site 54	
2.6.12. El-Mokattam Plateau	
2.6.13. El-Massara Site	
2.6.14. Helwan Site	
2.6.15. El-Tebin Site	
CHAPTER III	
ROCK MATERIAL COMPETENCE ASSESSED BY SEISMIC MEASUREMENTS FOR	
SEISMIC ZONES OF THE GREATER CAIRO AREA	
3.1. Introduction	
3.2 The N-Value	
3.3 The Concentration Index (Ci)	
The Foundation Material Bearing Capacity	
3.5 The a-Value	
3.6 The Stress Ratio In Soil (Si)	
CHAPTER IV 78	

		Page
	SEISMIC MICROZONING	
4.1	Estimation Of Seismic Motions For Seismic	
	Microzoning	
4.2	Seismic Hazard Analysis Of Egypt	89
	4.2.1. Extreme Value Models	91
	4.2.2. Seismic Source Modeling	92
4.3	Method For Calculation Of Seismic Motions	96
4.4	Estimation Of Seismic Motions At	117
	The Base Rock In Egypt	
	4.4.1. Surface Geology Effects In Seismic Microzon	
	Method1	ning
	4.4.2. Estimation Of Seismic Intensity	134
	At The Ground Surface 1	43
4.5	Seismic Microzoning Around The Greater Cairo	-13
	Area By A Precise Method 1	50
4.6	SH-waves Multi-reflection Theory With	30
	Haskell's Matrix Method	6 7
4.7	Subsurface Amplification Characteristics For	3 /
	The Greater Cairo Area 16	- 0
4.8	Surface Geology Effects Of The Greater Cairo For	. U
	A Seismic Microzoning Method 16	. =
4.9	Evaluation Of Seismic Coefficient For	15
	Greater Cairo Area	_
SUMMARY	AND CONCLUSION	8
REFERENC	CES	3
		_

	Page
APPENDICES	
ARABIC SUMMARY	

LIST OF FIGURES

	Page
Fig. 1: Topographic Map Of Egypt	. 13
Fig. 2: A Simplified Geological Map Of Egypt	. 14
Fig. 3: Sketch Map Of Major Structural Elements Of Egypt, Aft	ter
El-Shazly, 1977	. 16
Fig. 4: Geological Map Of The Greater Cairo Area	20
Fig. 5: The Standard Connecting Methods Of The Mc SEIS 1300	20
Fig. 6: Example Of Seismic Records Of P-waves As	2,9
A Representative Of A Greater Cairo Area	3.0
Fig. 7: Example Of Seismic Records Of SH-wave As A	30
Representative Of A Greater Cairo Area	2.5
Fig. 8: Method For Generating P-and SH-waves	31
Fig. 9: P-Wave Travel Time Curve And The Corresponding	34
Cross-section At El-Zeitoun Site	2.0
Fig. 10: SH-Wave Travel Time Curve At El-Zeitoun Site	38
Fig. 11: P-Wave Travel Time Curve And The Corresponding	38
Cross-section At Kobri El-Kobba Site	
Fig. 12: SH-Wave Travel Time Curve At Kobri El-Kobba Site	40
Fig. 13: P-Wave Travel Time Curve And The Corresponding	40
Cross-section At El-Matariya Site	
Fig. 14: SH-Wave Travel Time Curve At El-Matariya Site	42
Fig. 15: P-Wave Travel Time Curve And The Corresponding	42
Cross-section At Ghamra Site	
Fig. 16: SH-Wave Travel Time Curve At Ghamra Site	43
Fig. 17: P-Wave Travel Time Curve And The Corresponding	43

Cross-section At Shubra Site
Fig. 18: SH-Wave Travel Time Curve At Shubra Site
Fig. 19: P-Wave Travel Time Curve And The Corresponding
Cross-section At Ramses Site
Fig. 20: SH-Wave Travel Time Curve At Ramses Site
Fig. 21: P-wave Travel Time Curve And The Corresponding
Cross-section At El-Tahrir Site
Fig. 22: SH-Wave Travel Time Curve At El-Tahrir Site
Fig. 23: P-Wave Travel Time Curve And The Corresponding
Cross-section At El-Gezira Site
rig. 24: SH-Wave Travel Time Curve At El-Gezira Site
Fig. 25: P-Wave Travel Time Curve And The Corresponding
Cross-section At El-Dokki Site
Fig. 26: P-Wave Travel Time Curve And The Corresponding
Cross-section At Imbaba Site
rig. 27: SH-Wave Travel Time Curve At Imbaba Site
rig. 28: P-wave Travel Time Curve And The Corresponding
Cross-section At El-Giza Site
Fig. 29: SH-Wave Travel Time Curve At El-Giza Site
Fig. 30: P-Wave Travel Time Curve And The Corresponding
Cross-section At El-Mokattam Plateau
rry. 31: SH-Wave Travel Time Curve At El-Mokattam Plateau 52
rig. 32: P-Wave Travel Time Curve And The Corresponding
Cross-section At El-Massara Site
Fig. 33: SH-Wave Travel Time Curve At El-Massara Site.
rig. 34: P-Wave Travel Time Curve And The Corresponding
Cross-section At Helwan Site

Fig. 35: SH-Wave Travel Time Curve At Helwan Site 60
Fig. 36: P-Wave Travel Time Curve And The Corresponding
Cross-section At El-Tebin Site
Fig. 37: SH-Wave Travel Time Curve At El-Tebin Site 62
Fig. 38: The Distribution Of N-Value Around The Greater
Cairo Area66
Fig. 39: The Relation Between The Concentration index and
the Poisson's Ratio As A Representative Of A
Greater Cairo Area
Fig. 40: The Relation Between The Concentration index and
the Poisson's Ratio As A Representative Of A
Greater Cairo Area 69
Fig. 41: The Relation Between The Concentration index and
the Velocity Squared Ratio As A Representative
Of A Greater Cairo Area
Fig. 42: The Relation Between The Concentration index and
the Velocity Squared Ratio As A Representative
Of A Greater Cairo Area
Fig. 43: The Distribution Of Concentration Index Around
The Greater Cairo Area
Fig. 44: The Distribution Of Ultimate Bearing Capacity
Around The Greater Cairo Area
Fig. 45: The Distribution Of Allowable Bearing Capacity
Around The Greater Cairo Area
Fig. 46: The Distribution Of a-Value Around The Greater
Cairo Area 79
Fig. 47: The Relation Between The Stress Ratio and the

Poisson's Ratio As A Representative Of A
Greater Cairo Area 81
Fig 48: The Relation Between The Stress Ratio And
The Velocity Square Ratio As A Representative
Of A Greater Cairo Area 82
Fig. 49: The Distribution Of The Stress Ratio Around The
Greater Cairo Area
Fig. 50: The Relation Between The Stress Ratio And The
N-Value Around The Greater Cairo Area
Fig. 51: The Relation between The Velocity Ratio And The
Elastic Ratio (k/u) In The C
Elastic Ratio (k/μ) In The Greater Cairo Area 86 Fig. 52: First Gumbells Model Day 5
Fig. 52: First Gumbel's Model For Source (1). The Circles
Indicate Maximum Magnitudes Observed Every Year 99 Fig. 53: Third Gumbolto Matter
Fig. 53: Third Gumbel's Model For Source (1). The Circles
Indicate Maximum Magnitudes Observed Every Year 100
Fig. 54: Triple Exponential Model For Source (1). The Circles
Indicate Maximum Magnitudes Observed Every Year 101
Fig. 55: First Gumbel's Model For Source (2). The Circles
Indicate Maximum Magnitudes Observed Every Year 104
rig. 56: Third Gumbel's Model For Source (2). The Circles
Indicate Maximum Magnitudes Observed Every Year 106
rig. 57: Triple Exponential Model For Source (2). The Circles
Indicate Maximum Magnitudes Observed Every Year 107
Fig. 58: Triple Exponential Model For Source (3). The
Circles Indicate Maximum Magnitudes Observed
Every Three Months 110
Fig. 59: First Gumbel's Model For Source (4). The Circles

Indicate Maximum Magnitudes Observed Every Two Year. 113
Fig. 60: Third Gumbel's Model For Source (4). The Circles
Indicate Maximum Magnitudes Observed Every Two Year, 114
Fig. 61: Triple Exponential Model For Source (4). The Circles
Indicate Maximum Magnitudes Observed Every Two Year, 115
Fig. 62: Schematic Illustration Of Midorikawa And Kobayashi
Method
Fig. 63: Focal Mechanism For The Hypothetical Northern Red
Sea Earthquake
Fig. 64: Fault Parameters Of The 1969 Shedwan And The
Hypothetical Northern Red Sea Earthquakes
Fig. 65: Focal Mechanism For The Hypothetical Nile Delta
Earthquake
Fig. 66: Focal Mechanism For The Hypothetical South East
Mediterranean Sea Earthquake
Fig. 67: Fault Parameters Of The Hypothetical Nile Delta,
Gulf Of aqaba-Dead Sea and The South East Medit-
erranean Sea Earthquakes
Fig. 68: The Distribution Of Peak Acceleration At The Base
Rock Around Egypt For Shedwan Earthquake
rig. 69: The distribution Of Peak Acceleration At The Base
Rock Around Egypt For the Hypothetical Northern
Red Sea Earthquake
rig. 70: The distribution Of Peak Acceleration At The Base
Rock Around Egypt For the Hypothetical Nile Delta
Earthquake
Fig. 71: The distribution Of Peak Acceleration At The Base

		Rock Around Egypt For the Hypothetical Gulf Of
		Aqaba-Dead Sea Earthquake 133
Fig.	72:	The distribution Of Peak Acceleration At The Base
		Rock Around Egypt For the Hypothetical South East
		Mediterranean Sea Earthquake 133
Fig.	73:	The Relation Between The Amplification Factor And
		The Shear Wave Velocity, After Midorikawa And
		Kobayashi, 1980 135
Fig.	74:	Geological Conditions Map Of Egypt 137
Fig.	75:	The Distribution Of Peak Acceleration On The Ground
		Surface Around Egypt For Shedwan Earthquake 138
Fig.	76:	The Distribution Of Peak Acceleration On The Ground
		Surface Around Egypt For The Hypothetical Northern
		Red Sea Earthquake 139
Fig.	77:	The Distribution Of Peak Acceleration On The Ground
		Surface Around Egypt For The Hypothetical Nile Delta
		Earthquake 140
Fig.	78:	The Distribution Of Peak Acceleration On The Ground
		Surface Around Egypt For The Hypothetical Gulf Of
		Aqaba-Dead Sea Earthquake 141
Fig.	79:	The Distribution Of Peak Acceleration On The Ground
		Surface Around Egypt For The Hypothetical South
		East Mediterranean Sea Earthquake 142
Fig.	80:	The Distribution Of Intensity At The Surface Around
		Egypt For Shedwan Earthquake 145
Fig.	81:	The Distribution Of Expected Intensity At The
		Surface Around Egypt For The Hypothetical