ATTEMPTS FOR GENETIC IMPROVEMENT OF AN AZOTOBACTER SPECIES THROUGH AQUIRING RHIZOBIA GENES

BY

WAFAA KAMAL EL DIN HEGAZY

B. Sc. (Microbiology - Chemistry), Ain Shams University 1981M. Sc. (Microbial Genetics), Ain Shams University, 1988

THESIS

81, 151 W H

Submitted for

The Degree of

Doctor of Philosophy

in

MICROBIAL GENETICS

Botany Department
Microbiology Division
Faculty of Science
Ain Shams University
(1993)

ACKNOWLEDGEMENT

The author wishes to express her thanks and gratitute to Prof. Dr. Khairia A. Youssef, Professor of Microbiology, Faculty of Science, Ain Shams University, Prof. Dr. A.M.M. Ali, Professor of Microbial and Biochemical Genetics and Head Genetic Engineering and Biotechnology Div. N.R.C. and Prof. Dr. O.E.A. El-Gibaly, Prof. of Microbial Genetics, and Head of Microbial Genetics Dep., Genetic Engineering and Biotech. Div. N.R.C. for suggesting the problem, supervision, their great help and encouragements during the practical investigations.

Thanks are also due to all members of Microbial Genetic Dep., Genetic Engineering & Biotech. Div., N.R.C.

The work had been carried out in Microbial Genetics Dep., N.R.C.

Preface

Aerobic, nitrogen fixing-free-living soil microorganisms such as *Azotobacter* may with the aid of genetic manipulation, provide an additional source of renewable nitrogen for enhancing crop yields.

Azotobacter has some biological properties that could be utilized in the development of an effective bacterial fertilizer. It is found in temperate zones, its sticky outer coat enable it to be used as a seed dressing and it is quite hardly and not soil specific. Therefore, the initial target in our investigation is to increase the nitrogen fixation efficiency of Azotobacter strains through isolation of different Azotobacter different genotypes, and through transstrains with formation by transferring the genetic materials of Rhizobia and studying the symbiotic relations of such transformants with different plants.

CONTENT

	Page
Part I	
A. Introduction	
I. Gene transfer system	
A. In Azotobacter B. In Rhizobium leguminosarum	
II. Nitrogen fixation genes (nif genes)	
A. Nitrogen fixation genes in Klebsiella	. 12
B. Nitrogen fixation genes in Azotobacter	
C. Nitrogen fixation genes in Rhizobium	. 15
D. Regulation of <u>nif</u> genes	. 17
III. Symbiosis	
A. Rhizobial symbiotic genes	. 19
B. Host symbiotic genes	. 23
IV. Factors affecting Azotobacter growth	. 24
B. MATERIALS AND METHODS	
1. Materials	
a. Bacterial strains	. 28
b. Media	
2. Methods	
a. Induction of Azotobacter competence	
b. DNA Isolation	
c. Transformation	
d. Assay of nitrogen fixation	
e. The nodulation test	. 32
f. Mutation	. 33
	. 34
Part II Experimental Results	
Mutation	. 36
Transformation experiments	

I.	Tr	ansformation of Azotobacter wild type strain	
	a.	Genetic transformation of A. vinelandii and	
		A. chroococcum wild type with purified R .	
		trifolii DNA	39
	b.	Transformation of A. vinelandii and A. chroococcum	
		wild type with crude lysate and purified R .	
		leguminosarum DNA	42
	c.	Genetic transformation of A. vinelandii wild	
		type by using PEG Under Fe-Mo limited condition .	46
ıı.	Tr	asformation of Azotobacter mutant unable to fix	
		trogen nif mutant	50
	a.	Transformation of Azotobacter nif mutant by	
		wild type str R. leguminosarum bv. trifolii	
		DNA	51
	b.	Transformation of Azotobacter vinelandii nif	
		mutants with R. leguminosarum by. Vicia faba	
		DNA	59
III.	Fac	ctors affecting Azotobacter growth and activities	
	a.	Effect of salinity (NaCl) on Azotobacter growth	
		and N_2 -fixation capacity	65
	b.	Effect of different temp on Azotobacter growth	
		and N ₂ -fixation capacity	68
	c.	Effect of different pH on Azotobacter growth &	
		N ₂ -fixation capacity	70
Part	. тт	· 1	
		· -	
Α.	DIS	CUSSION	72
В.	SUM	IMARY	83
c.	REF	ERENCES	88
D.	ARA	BIC SUMMARY	104

PART I

- A- INTRODUCTION
- B- MATERIALS AND METHODS

INTRODUCTION

I.a Gene transfer systems in Azotobacter

Genetic information can be transferred in Azotobacter by transduction (Wyss, 1962) and by transformation (David et al., 1981, and Kennedy & Drummond, 1985).

Although transformation originally reported for A. Vinelandii and A. chroococcum, Sen et al. (1969) studied and used only A. vinelandii.

Page and Sadoff (1976) described the first reliable procedure for inducing competence and for the transformation of A. vinelandii culture. They also studied the different environmental factors influencing transformation. They examined each of the major constituents of the Burk nitrogen free media and its effect on transformation, they also concluded that crude lysate DNA was the best donor for the transformation of A. vinelandii and that purification of the DNA was very detrimental to the transformation frequency. This conclusion was probably due to that crude lysate DNA containing some chemical or cell fractions which are required for transformation.

Page (1978) found that the frequency of nif^+ transformants using $\operatorname{Rhizobium}$ DNA was always less than the

frequency using Azotobacter wild type DNA but was greater than the spontaneous reversion frequency. Azotobacter nif⁺ recombinants also were stable, some of them had a lower nitrogenase activity a delayed nitrogenase depression time. He also found that mutants defective in nitrogenase component I were transformed to nif⁺ by asymbiotic nitrogen fixing Rhizobium sp. but not the symbiotic nitrogen fixing sp.

Maier, et al. (1978) transformed Azotobacter vinelandii that is unable to fix N_2 nif to nif with DNA from Rhizobium Japonicum. They also found that of 50 nif transformants 3 contained the 0 antigen-related polysaccharide that is present on the cell surface of nodulating R. Japonicum strain but is absent from a non nodulating mutant strain. They used wild type R. Japonicum 6 [A76] as donor and A. vinelandii nif mutant uw_{10} as recipient. The transformation frequency was 9.7 x 10^{-7} nif transformants per cell plated. They examined fifty of these nif transformants for agglutination by rabbit antiserum prepared against whole cell of wild type R. Japonicum. They found that four of these transformants strains gave a positive reaction.

Page and Von Tigerstrom (1978) induced transformation competence in A. vinelandii iron-limited cultures.

They induced A. vinelandii strains (uw,) competent cells by growing culture in Burk medium without added iron. They found that the competent culture was highly colored by the characteristic fluorescent green pigment of A. vinelandii but all pigmented cultures were not competent. In liquid culture competent cells required a fixed nitrogen source ammonia, nitrate or urea that was also a nitrogenase repressor. Glucose, sucrose, glycerol and mannitol (1% w/v) were excellent C. sources for competence induction while acetate (1% w/v) and ßhydroxybutyrate (0.2 w/v) were ineffective. Cells induced in liquid culture remained competent for 12 h period before the end of the exponential growth phase. Then competence decreased rapidly upon the initiation of stationary phase of growth.

Page and Von-Tigestrom (1979) reported that the optimal trasformation of Azotobacter vinelandii required 20 min incubation of the competent cells with DNA at 30° C in Burk buffer pH = 7.2 containing 8 mM MgSO₄. Nitrogen fixing transformants of nitrogen fixation deficient recipient could be plated immediately on selective medium, but transformants requiring rifampin streptomycin resistant required preincubation and selective medium. non The three phenotypes achieved an approximately equal and stable frequency after 17 h of growth in non selective medium.

Page and James (1981) studied the effect of calcium on transformation, they found that cells were grown in calcium-limited medium appeared to have leaky cell envelopes and released a diverse array of protein into the culture supernatant. They also concluded that, calcium may form specific protein and LPS complexes which effect envelope permeability. These conditions greatly increase the transformation percentages.

Doran and Page (1983) reported that heating competent A. vinelandii at 37°C or 42°C resulted in a total loss of competence with no loss of viability. This investigation indicate that competent A. vinelandii heated at 24°C for 20 min. is unable to transport donor DNA across the all evnelope but is fully capable of binding DNA in a DNase - resistant state. The survival and expression of newly transported donor DNA marker are insensitive to heating at 42°C.

Page (1985) investigated that A. vinelandii nif-mutants uw₃, uw₄₅ and uw₉₁ that did not become competent for genetic transformation after growth in Fe-limited competent induction medium and did not become competent when Mo starvation also was imposed. Mo starvation of other Fe-limited competent strains increased their frequency of transformation. Mo starvation also increased frequency of transformation of strain uw₁ with heterologous

DNA from Azotobacter, Rhizobium and Bajerinckia Mo starvation did not increase the competence of the encapsulated A. vinelandii strain.

Click et al. (1986 b) developed a cellulolytic A. vinelandii by transformation of A. vinelandii in liquid media with broad host range plasmid PKK 2501, RSF 1010 amd PG 5515.

Abd-El Salam et al. (1987 a) used purified Azotobacter chroococcum, A. vinelandii and R. leguminosarum DNA to produce E. Coli K_{12} . N_2 -fixing transformants with the frequencies of 0.319 x 10^{-6} , 0.332 x 10^{-6} and 0.391 x 10^{-6} respectively. R. leguminosarum nif plasmid gave a transformation frequency of 0.338 x 10^{-6} . The results proved homology between nif genes regions of both A. chroococcum and A. vinelandii. R. leguminosarum nif genes were found to be closer than those of A. chroococcum or A. vinelandii The nodulation experiments indicated that nod genes were apart from nif genes in R. leguminosarum and that nodulation may require many different genes.

Abd-El Salam et al. (1987b) found that the equal DNA concentrations of either Azotobacter chroccocum & A. vinelandii were able to produce about the same frequencies of nitrogen fixing B. subtilis transformants.

DNA from Azotobacter, Rhizobium and Bajerinckia Mo starvation did not increase the competence of the encapsulated A. vinelandii strain.

Click et al. (1986 b) developed a cellulolytic A. vinelandii by transformation of A. vinelandii in liquid media with broad host range plasmid PKK 2501, RSF 1010 amd PG 5515.

Abd-El Salam et al. (1987 a) used purified Azotobacter chroococcum, A. vinelandii and R. leguminosarum DNA to produce \underline{E} . Coli K_{12} . N_2 -fixing transformants with the frequencies of 0.319 x 10^{-6} , 0.332 x 10^{-6} and 0.391 x 10^{-6} respectively. R. leguminosarum $\underline{\text{nif}}$ plasmid gave a transformation frequency of 0.338 x 10^{-6} . The results proved homology between $\underline{\text{nif}}$ genes regions of both A. chroococcum and A. vinelandii. R. leguminosarum $\underline{\text{nif}}$ genes were found to be closer than those of A. chroococcum or A. vinelandii The nodulation experiments indicated that $\underline{\text{nod}}$ genes were apart from $\underline{\text{nif}}$ genes in R. leguminosarum and that nodulation may require many different genes.

Abd-El Salam et al. (1987 b) found that the equal DNA concentrations of either Azotobacter chroococcum & A. vinelandii were able to produce about the same frequencies of nitrogen fixing B. subtilis transformants.

The ability of R. leguminosarum DNA and plasmids to transform B. subtilis was very low.

Nieveen (1987) showed transformants had different levels of nitrogen fixation efficiency ranged from $4.0\text{--}40~\text{mg}\,\text{N}_2/\text{1}\,\text{MM}$ in both intra and interspecific transformation using A. chroococcum and A. vinelandii. Great differences in nitrogen fixation were obtained among the single transformants of each recipient strain. Some of them were more efficient to fix nitrogen than their recipient or donor strains and others were less efficient.

I.B Gene transfer systems in Rhizobium leguminosarum

Dunican and Tierney (1974) transferred an F-like R-factor into $Rhizobium\ trifolii$ which has been able to transfer the nitrogen-fixing genes from R. trifolii to $klebsiella\ aerogenes\ 418$, a strain incapable of fixing nitrogen. This intergeneric transfer has occurred at a frequency of 10^{-7} or higher. The K. $aerogenes\ hybrids$ reduced acetylene at rates similar to a naturally occurring nitrogen-fixing strain, K. $pneumoniae\ M5A1$.

Johnston et al. (1978) conjugated Rhizobium leguminosarum (nodulates pea) to R. leg. bv. trifolii or R. leg. bv. phaseoli and yielded R. leg. bv. trifolii or R. phaseoli transconjugants with the ability to nodulate pea.