
SERUM TUMOR NECROSIS FACTOR-α IN CHILDREN WITH TYPHOID FEVER

Thesis submitted to the Faculty of Medicine, Ain Shams University, in partial fulfillment of the requirements of the degree of

MASTER OF PAEDIATRICS

9 A<u>:</u>

Ayman Ramadan Abdel Moneem MBBCh Alex

SUPERVISED BY

Professor of Paediatrics, Faculty of Medicine, Ain Shams University

Prof. Dr. Mohamed Fathalla Moustafa

Professor of Paediatrics, Faculty of Medicine, Ain Shams University

Prof. Dr. Moustafa Mohamed El-Rasad

Professor of Biochemistry, Faculty of Medicine, Ain Shams University

FACULTY OF MEDICINE AIN SHAMS UNIVERSITY 1997

P

Pr

ACKNOWLEDGMENT

I would like to express my deepest gratitude and sincere appreciation o Prof. Or. Koth Ahmed Tolha, Professor of Pediatrics, Ain Shams Iniversity, for his valuable advice and without his supervision, meticulous uidance and gratifying scientific help, this work would have not been ccomplished.

I wish to express my gratitude and hearty feelings to Prof. Dr. Wohamed Fathalla Moustafa, Professor of Pediatrics, Ain Shams Iniversity, for his patience, kind constructive suggestions and continuous necouragement throughout the preparation of this work.

My deep thanks are extended to Prof. Dr. Moustafa Mohamed El-Rasad, Professor of Biochemistry, Ain Shams University, for his help, ontinuous support and active participation that allowed the accomplishment of the practical part of the work.

Finally, I would like to thank all the members of Alexandria Fever lospital and our patients for their participation in this work.

CONTENTS

Chapter		
l.	INTRODUCTION AND AIM OF THE WORK	1
II.	REVIEW OF LITERATURE	3
III.	SUBJECTS AND METHODS	43
IV.	RESULTS	59
V.	DISCUSSION	86
Vl.	SUMMARY AND CONCLUSIONS	92
VII.	REFERENCES	95
	ARABIC SUMMARY	

List of Tables

Table	Page
Table (I): Characteristic properties of cytokines	19
Table (II): Characterisitic properties of human TNF	22
Table (III): Factors induced by tumor necrosis factor	28
Table (IV): Biological Effects of Tumor Necrosis Factor-α	35
Table (V): Sex distribution among the studied cases of typhoid fever as compared with the control group	60
Table (VI): Age distribution among the studied cases of typhoid patients as compared with the control group	60
Table (VII): Age distribution among the studied cases of typhoid fever as compared with the control group	61
Table (VIII): Clinical presentation of the studied cases of typhoid fever	65
Table (IX): Comparison of blood picture between patients and controls	66
Table (X): Sex, age and serum TNF-α levels in the control group	69
Table (XI): Sex, age and serum TNF-α levels in the typhoid patients	70
Table (XII): Correlation coefficient between serum TNF- α values and the personal and laboratory characteristics of the control group	71
Table (XIII): Correlation coefficient between serum TNF-α values and the personal and laboratory characteristics of the studied cases of typhoid fever	71

Table	Page
Table (XIV): Correlation coefficient of serum TNF-α values with Widal (O agglutinins) titer of the studied cases of typhoid fever	72
Table (XV): Correlation of Widal (O agglutinins) titer with symptoms, signs and complications of the studied cases	74
Table (XVI):Distribution of the mean values of serum TNF-α before treatment among the studied cases of typhoid fever as compared with the control group	75
Table (XVII) :Distribution of the mean values of serum TNF-α after treatment among the studied cases of typhoid fever as compared with the control group	76
Table (XVIII):Distribution of the mean values of serum TNF-α before treatment and after one week therapy among the studied cases of typhoid fever (n=30)	76
Table (XIX) :Correlation of serum TNF-α levels with the clinical presentation of the studied cases of typhoid fever	79
Table (XX): Distribution of the mean values of serum TNF- α among the complicated and uncomplicated cases of typhoid fever	81
Table (XXI): TNF-α test results in patients and controls	84
Table (XXII): Sensitivity, specificity, predictive value positive, predictive value negative and accuracy in diagnosis of typhoid fever	84
Table (XXIII): TNF-α test results in complicated and uncomplicated cases of typhoid fever	85
Table (XXIV): Sensitivity, specificity, predictive value positive, predictive value negative and accuracy in predicting the occurence of complications in patients with typhoid fever	85

List of Figures

Figure	Page
Figure (1): Mechanisms of tumor cell control by macrophages	
Figure (2) : Effect of TNF- α and β on hematopoietic and lymphoid tissues	37
Figure (3): Effect of TNF-α and β on non lymphoid tissues	39
Figure (4): Standard curve for TNF-α assay	51
Figure (5): Sex distribution of the studied controls and patients	62
Figure (6): Mean age of controls and patients	63
Figure (7): Age distribution of the studied controls and patients	64
Figure (8): Mean levels of red blood cell, white blood cell and platelet counts in both patients and controls	
Figure (9): Correlation between Widal (O agglutinins)titer and serum TNF-α level in the studied cases of typhoid fever	73
Figure (10): Mean serum TNF-α levels of patients (before and after one week treatment) and controls	
Figure (11): Correlation between duration of fever and serum TNF- α levels in the studied cases of typhoid fever	80
Figure (12): Mean serum TNF- α levels of the controls uncomplicated and complicated cases of typhoid fever	82
Figure (13): Cut-off points of serum TNF- α levels for diagnosis (A) and predicting the occurrence of complications (B) in typhoid fever	-83

INTRODUCTION AND AIM OF THE WORK

INTRODUCTION AND AIM OF THE WORK

Typhoid fever is an acute infectious communicable disease. t continues to occur as an endemic disease in several parts of the world including Egypt (*Kamal*, 1975).

Typhoid fever in children had various clinical nanifestations and so it must be considered in any acute disease. Definitive diagnosis of typhoid fever requires isolation of the organism from blood, bone marrow, faeces or urine, techniques hat are not always practicable particularly in the rural areas *Mandal*, 1994).

The Widal serodiagnostic test has many limitations (Anonymous, 1978) but continues to be widely used. Cytokines are hormone-like polypeptides of glycoproteins synthesized and secreted from activated lymphocytes and monocytes that participate in a variety of cellular responses including the regulation of immune system (Oppenheim et al, 1991).

Tumor necrosis factor-α is a cytokine predominantly released by cells of the monocyte-macrophage lineage in response to activation and it acts via specific cellular receptors

that also mediate uptake and degradation of the proteins (Petersen et al, 1989).

The pro-inflammatory cytokines including tumor necrosis factor- α have been implicated in the pathogenesis of sepsis caused by Gram-negative microorganisms (Cannon et al, 1990).

The role of tumor necrosis factor- α in the pathogenesis of inflammatory reaction of typhoid fever and its relation to the outcome of the disease was studied in adults (*Keuter et al*, 1994) but not well studied in children.

The aim of the present work is to determine the level of tumor necrosis factor- α in the serum of children suffering form typhoid fever at different intervals (before therapy and after one week from the start of therapy) in order to investigate the association of serum TNF- α concentration with the severity of the disease and also to assess its value in predicting the outcome of the disease.

REVIEW OF LITERATURE

REVIEW OF LITERATURE

TYPHOID FEVER

Typhoid fever is an acute infectious disease. It is a disease of world wide prevalence especially in Asia, Africa and North America. Typhoid fever is endemosporadic in Egypt. It could occur all the year round, but it runs a yearly seasonal rise during he months May to October reaching its peak in August (Kamal 4M, 1958).

The incidence of the disease is higher in urban than rural areas due to presence of communal catering in towns, or to better notification in towns with more developed health services (Kamal Moussa, 1970).

Typhoid fever can affect any age but the morbidity rate is nigher in the age group from five to twenty years, while the mortality rate is higher under five years of age (World Health Statistics, 1981).

Etiology:

In Egypt; typhoid fever represents about 75% of cases of enteric fevers (typhoid and paratyphoid fevers), followed by paratyphoid A that forms about 20% of the cases, then

paratyphoid B that forms about 5% of the cases, whereas parathyroid C is very rare (El-Akkad AM, 1970).

Salmonella typhi are Gram negative, non spore forming, motile bacilli (Jawetz E et al, 1978). they possess three antigens; O or somatic antigen, H or flagellar antigen and Vi or second somatic antigen responsible for the virulence of the organism (Wilson and Miles, 1975).

Salmonella organisms are killed by temperature 60°C for 15-30 minutes but they resist cold and can survive for a long time in frozen water and are easily destroyed by chlorination of water, pasteurization of milk and cooking of food (Wilson and Miles, 1975).

Pathogenesis:

Typhoid fever is primarily an infection of the hemopoietic tissue (Boyd W., 1961). The source of infection is always human either patients or carriers, and infection occurs by ingestion of the micro-organisms. After oral ingestion of the bacilli; most of them are destroyed by the high gastric acidity. The bacilli that escaped proliferate rapidly in the second part of the duodenum where bile gives a favourable alkaline medium for bacterial growth (Huckstep, 1962).

The bacilli pass through the intestinal mucosa of the lower ileum to the lymphoid tissue (Peyer's patches); producing a mild inflammatory reaction which is accompanied by infiltration of histiocytes, plasma cells, lymphocytes and polymorphonuclear leukocytes. The bacilli pass via the lymphatics to the mesenteric lymph nodes, and after multiplication they invade the blood stream via the thoracic duct resulting in primary bacteremia.

The blood stream becomes rapidly cleared from the bacilli by the phagocytic reticulo-endothelial cells of the spleen, liver, lymph nodes and bone marrow. In these cells; the bacilli undergo proliferation and finally the cells rupture and the blood stream is flooded with large number of bacilli producing secondary bacteremia, which starts at the end of the incubation period.

The organisms soon reach the bile; either directly from the capillaries in the gall bladder wall, or indirectly by the liver capillaries into the bile canaliculi and flourish in it. A second and heavier invasion of the intestine through the infected bile takes place. It is the second invasion which is responsible for the lesions occurring in the small intestine in the form of ulceration of the mucosa over the inflamed Peyer's patches together with mesenteric adenitis. When these intestinal lesions appear; the gross clinical manifestations of the disease become evident (Walter and Israel, 1979).

The typhoid bacillus exerts its main effects by an endotoxin which is not released until the death of the bacteria. The constitutional upsets are due mainly to this general toxaemia, while the local changes in tissue are due to both toxin and bacteremia. Therefore, every organ may be affected by toxaemia, bacteremia or by a combination of both (Huckstep, 1962).

Typhoid ulcers usually vary greatly in number and extent according to the severity of the disease, mainly they are long oval ulcers in the lower ileum, parallel to the long axis of the bowel and correspond in shape and arrangement to the Peyer's patches but may be high up in the small intestine and lower down in the large intestine. The appendix is frequently found to be affected with typhoid ulcers and a fair number of cases of peritonitis are found to be due to perforated typhoid appendix (Abu-Gharreeb, 1968).

The liver is hyperaemic, soft and enlarged in the early stages, microscopically; it shows the cloudy swelling of toxaemia with fatty changes in the liver cells. It can be involved by single or multiple typhoid abscesses (*Huckstep*, 1962).

The spleen is hyperaemic and enlarged especially in the early stages, it is soft and friable but rupture is rare, microscopically, small infarcts may be found with mononuclear cells and clumps of typhoid bacilli, the lymphoid follicles are packed with large mononuclear cells (*Huckstep*, 1962).