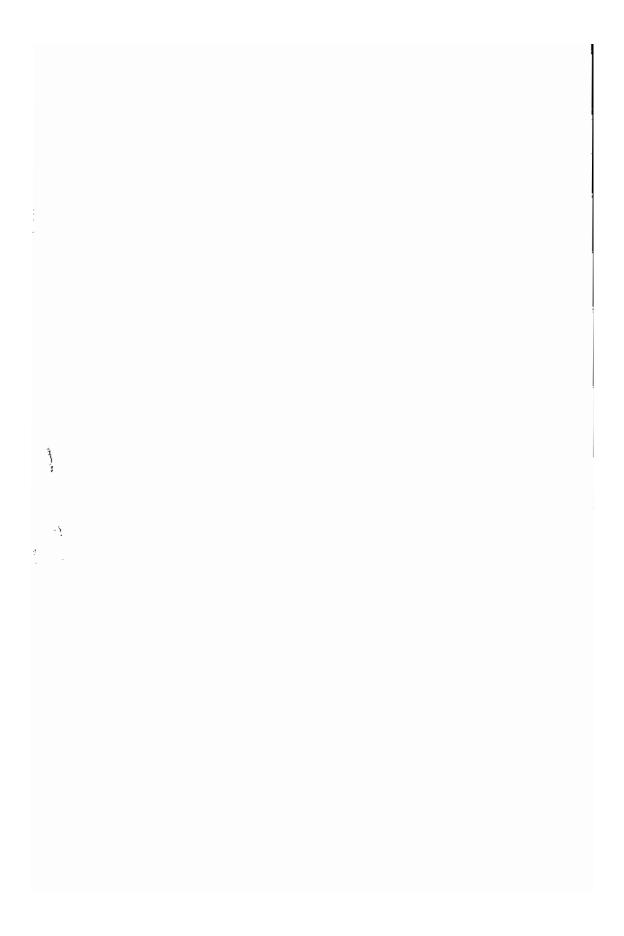
THE EFFECT OF WIDE USE OF DIFFERENT FERTILIZERS COMMERCIALLY PREPARED AND THE RESULTANT EFFECT OF THEIR ACCUMULATION ON PLANT AND SOIL

in si By co's

NADIA KHALIL IBRAHIM KANDIL

B.Sc., Agric., (Biochemistry), Ain Shams Univ., 1971 M.Sc., Agric., (Plant Physiology), Cairo Univ., 1983


A Thesis submitted for the Degree of Doctor of Philosophy

ENVIRONMENTAL SCIENCE

60550

Department of Agricultural Science Institute of Environmental Studies and Research

APPROVAL SHEET

Name of student: NADIA KHALIL IBRAHIM KANDIL

Title of Thesis:

THE EFFECT OF WIDE USE OF DIFFERENT FERTILIZERS COMMERCIALLY PREPARED AND THE RESULTANT EFFECT OF THEIR ACCUMULATION ON PLANT AND SOIL

Degree: Ph.D. in Environmental Science

This Thesis for Ph.D. degree has been approved by:

Prof. Dr. Abdel-Ghany Ibrahim Omar Baz

(Member)

Professor of Plant Physiology,

Dept. of Agric. Botany,

Faculty of Agriculture, Suez Canal University

Prof. Dr. Mahmoud Mohamed Mahmoud

(Member)

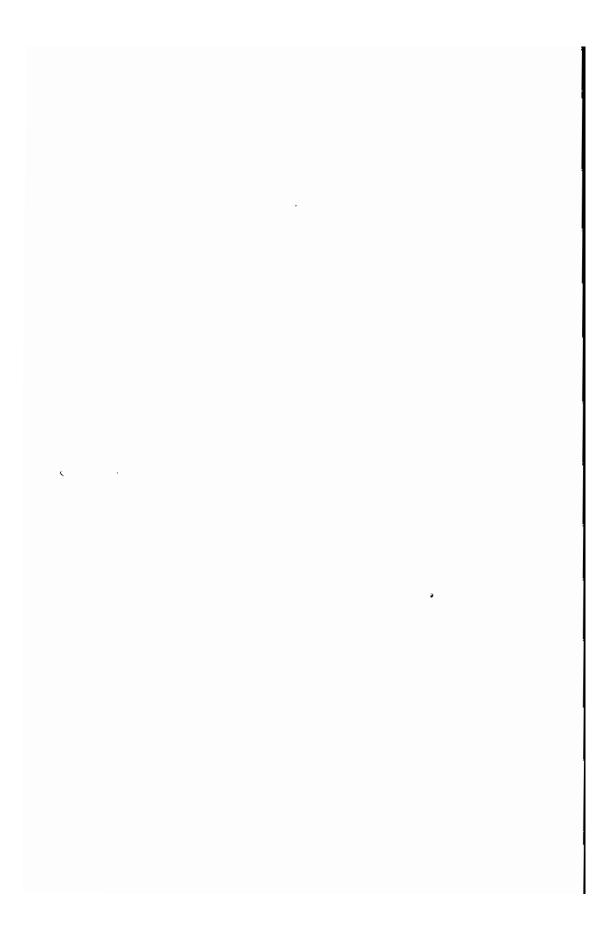
Professor of Plant Physiology,

Dept. of Agric. Botany,

Faculty of Agriculture, Ain Shams University

Prof. Dr. Mohamed Abdel-Rabim Abdel-Halim

(Supervisor and Member)

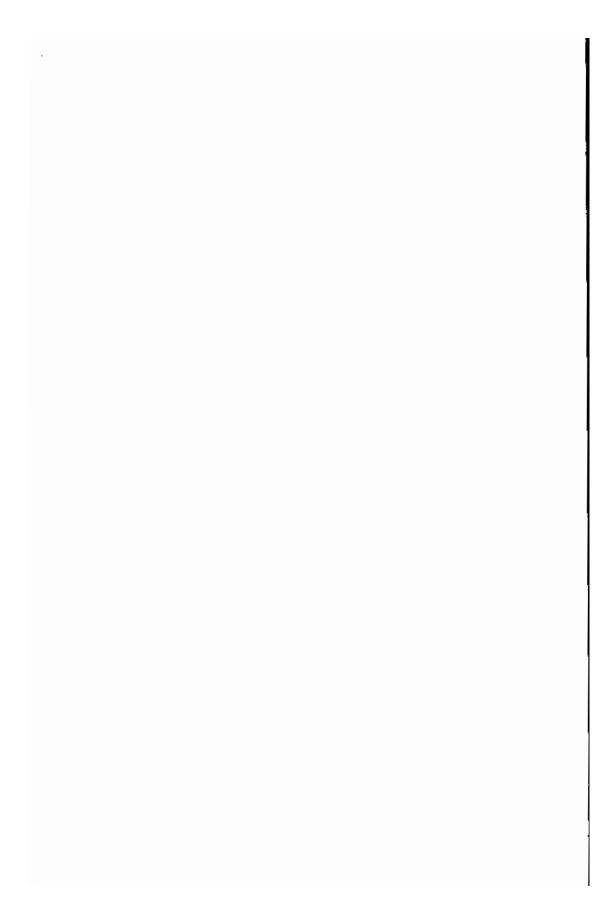

Professor Emeritus of Agric. Botany and Plant Physiology,

Faculty of Agriculture, Ain Shams University

Committee in Charge

H. H. Habrery

Date of Examination / / 1997


ACKNOWLEDGMENT

author wishes to express her deepest gratitude and indebtedness to Prof. Dr. Mohamed A. Abdel-Halim, Emeritus of Agric. Botany and Professor of Agriculture, Ain Physiology, Faculty University, main supervisor, who in the first place suggested the problem and supervised the work. His valuable suggestions and sincere encouragement and made throughout the preparation of the efforts manuscript are greatly appreciated.

Grateful thanks are also extended to Prof. Dr. Samir M. Abd El-Aziz, Professor of Soil Science and Director of Improvement and Conservation of cultivated soil Research Department, Soils, Water and Environment Research Institute, Agricultural Research Center, for his participation in proposing and planning the study subject, continuous supervision, providing facilities needed throughout the investigation and in preparing and critically revising the manuscript.

I also greatly acknowledge the sincere efforts made by Dr. Ezzat M. Soliman, Associate Professor of Soil Science, Department of Agricultural Sciences, Institute of Environmental Studies and Research, Ain Shams University, for his valuable supervision and suggestions throughout the study.

Thanks are extended to all members of Soils, Water and Environment Research Institute of the Agricultural Research Center, and Arid Lands Agricultural Research Unit, Faculty of Agriculture, Ain Shams University, for their continuous assistance in providing all financial and material facilities.

TABLE OF CONTENTS

	Page
ABLE OF CONTENTS	iv
LIST OF TABLES	vi
LIST OF FIGURES	x
ABSTRACT	xiv
INTRODUCTION	1
REVIEW OF LITERATURE	3
2.1. Fertilizers as a source of trace elements	3
2.2. Accumulation of trace elements in soils	
as a result of fertilization	9
2.3. Effect of trace elements on plant growtl	ı 16
2.4. Accumulation of trace elements in plant	
2.5. Interaction between elements on their	
absorption	31
2.6. Effect of trace elements on some	
physiological aspects	35
Heavy metals and environmental	
contamination	43
MATERIALS AND METHODS	46
3.1. The permanent fertilization experiment	
at Bahtim Station	46
3.2. Sand culture experiment	58
3.3. Soil analysis	
3.4. Plant analysis	61
3.5. Fertilizer analysis	64
RESULTS AND DISCUSSION	71
4.1. The permanent fertilization experiment	
at Bahtim Station	71

4.1.1. Effect of agricultural rotations and permanent fertilization on plant growth
4.1.2. Effect of agricultural rotations and
permanent fertilization on content of
trace elements in red radish plants
4.2. Sand culture experiment
4.2.1. Effect of Cadmium on plant
4.2.2. Effect of Lead on plant
4.2.3. Effect of Cobalt on plant
4.2.4. Effect of Chromium on plant
5- CONCLUSION
6- SUMMARY
6- REFERENCES
ARABIC SUMMARY

LIST OF TABLES

<u>Table</u>	<u>Title</u>	Page
(1):	Particle size distribution of the investigated soil at Bahtim Agricultural Station.	50
(2):	Some chemical properties of the investigated soil of Bahtim permanent agricultural experiment	51
(3):	Effect of permanent fertilization and agricultural rotations on available trace elements (ppm) in the soil of Bahtim permanent agricultural experiment in 1992	52
(4):	Critical levels of trace elements in soil and plant	57
(5):	Total content of impurities of trace elements (ppm) in some commercial fertilizers	65
(6):	Total content of impurities of trace elements (ppm) in some foliar spray commercial fertilizers	68

<u>Table</u>	<u>Title</u>	Page
(7):	Effect of permanent fertilization and agricultural rotations on dry matter yield of red radish plants	72
(8):	Effect of permanent fertilization and agricultural rotations on elemental content (ppm) of red radish grown in soil of Bahtim permanent experiment	75
(9):	Fresh and dry matter yield of red radish plants grown on sand culture with different levels of cadmium	84
(10):	Elemental content in shoots and roots of red radish plants grown on sand culture with different levels of cadmium	87
(11):	Effect of cadmium on the content of amino acids (%) in red radish plant roots grown on sand culture	91
(12):	Pigment contents (mg/g F. wt.) of red radish plants grown on sand culture with different levels of cadmium	95
(13):	Fresh and dry matter yield of red radish plants grown on sand culture with different levels of lead	98

<u>Table</u>	<u>Title</u>	Page
(14):	Elemental content in shoots and roots of red radish plants grown on sand culture with different levels of lead	10 1
(15):	Effect of lead on the content of amino acids (%) in red radish plant roots grown on sand culture	104
(16):	Pigment contents (mg/g F. wt.) of red radish plants grown on sand culture with different levels of lead	109
(17):	Fresh and dry matter yield of red radish plants grown on sand culture with different levels of cobalt	111
(18):	Elemental content in shoots and roots of red radish plants grown on sand culture with different levels of cobalt	115
(19):	Effect of cobalt on the content of amino acids (%) in red radish plant roots grown on sand culture	117
(20):	Pigment contents (mg/g F. wt.) of red radish plants grown on sand culture with different levels of cobalt	121
(21):	Fresh and dry matter yield of red radish plants grown on sand culture with different levels of chromium	

Table	<u>Title</u>	<u>Page</u>
(22) :	Elemental content in shoots and roots of red radish plants grown on sand culture with different levels of	
	chromium	126
(23):	Effect of chromium on the content of amino acids (%) in red radish plant roots grown on sand culture	
(24):	Pigment contents (mg/g F. wt.) of red radish plants grown on sand culture with different levels of chromium	133

LIST OF FIGURES

Fig.	<u>Title</u>	<u>Page</u>
(1):	Plan of the permanent fertilization and agricultural rotation experiment at Bahtim Station	48
(2):	Effect of permanent fertilization and agricultural rotations on available Fe & Zn elemental content (ppm) in soil of Bahtim permanent agricultural experiment	53
(3):	Effect of permanent fertilization and agricultural rotations on available Mn & Cu elemental content (ppm) in soil of Bahtim permanent agricultural experiment	54
(4):	Effect of permanent fertilization and agricultural rotations on available $Cd \& Pb$ elemental content (ppm) in soil of Bahtim permanent agricultural experiment	
(5):	Effect of permanent fertilization and agricultural rotations on available Co & Cr elemental content (ppm) in soil of Bahtim permanent agricultural	•
	experiment	56

Fig.	<u>Title</u>	<u>Page</u>
(6):	Contents of trace elements in fertilizers used at Bahtim experiment	66
(7):	Contents of trace elements in other fertilizers	67
(8):	Contents of trace elements in some commercial fertilizers	69
(9):	Contents of trace elements in some commercial fertilizers	70
(10):	Effect of permanent fertilization and agricultural rotations on available Fe & Zn elemental content (ppm) of red radish grown in soil of Bahtim permanent agricultural experiment	77
(11):	Effect of permanent fertilization and agricultural rotations on available Mn & Cu elemental content (ppm) of red radish grown in soil of Bahtim permanent agricultural experiment	78
(12)	Effect of permanent fertilization and agricultural rotations on available Cd & Pb elemental content (ppm) of red radish grown in soil of Bahtim permanent agricultural experiment	79
	Larmont apringer autorition (''''''	