م م

Ain Shams University Faculty of Engineering

STUDY OF THE INTERACTION FORCES BETWEEN TYRE AND ROAD

BY

IBRAHIM MOHAMED OMRAN B. Sc. Mechanical Engineering

A THESIS

Submitted in partial fulfilment of the requirements for the degree of M. Sc. In Mechanical Engineering (Automotive Section)

SUPERVISED BY

Prof. Dr. T. A. Nosseir Ain Shams University Dr. A. I. Abdel Aziz Ain Shams University

Dr. M. A. Said Ain Shams University

Examiners committee

The undersigned certify that they have read and recommend to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled "Study of the Interaction Forces between Tyre and Road", submitted by Eng. Ibrahim Mohamed Omran, in partial fulfilment of the requirements for the degree of Master of Science in Mechanical Engineering.

Signature

Prof. Dr. FAWZY M. EL-SAYED

Professor of Automotive Engineering Faculty of Engineering, El-Menia University. EL Sayed F. M.

2. Prof. Dr. MOHAMED MOSTAFA EL-ALAILY

Professor of Automotive Engineering Faculty of Engineering, Ain Shams University.

Faculty of Engineering, Ain Shams University.

3. Prof. Dr. TAYSIR AHMED NOSSEIR

T. Nassen Professor of Automotive Engineering

Statement

This dissertation is submitted in partial fulfilment for the degree of Master of Science in Mechanical Engineering, to Ain Shams University.

The work included in this thesis was carried out by the author at the laboratories of the department of Automotive Engineering, Ain Shams University from 1991 to 1996.

No part of this thesis has been submitted for a degree or qualification at any other University or institute.

Signature:

Zbrahi Omran

Ibrahim Mohamed Omran

Examiners committee

The undersigned certify that they have read and recommend to the Faculty of Engineering, Ain Shams University for acceptance a thesis entitled "Study of the Interaction Forces between Tyre and Road", submitted by Eng. Ibrahim Mohamed Omran, in partial fulfillment of the requirements for the degree of Master of Science in Mechanical Engineering.

Signature

Prof. Dr. FAWZY M. EL-SAYED

Professor of Automotive Engineering
Faculty of Engineering, El-Menia University.

2. Prof. Dr. MOHAMED MOSTAFA EL-ALAILY

Professor of Automotive Engineering
Faculty of Engineering, Ain Shams University.

3. Prof. Dr. TAYSIR AHMED NOSSEIR

Professor of Automotive Engineering
Faculty of Engineering, Ain Shams University.

Acknowledgement

I would like to express my sincere appreciation to my supervisors Prof. Dr. T. A. Nosseir, Dr. A. I. Abdel Aziz and Dr. M. A. Said for their guidance, assistance, encouragement and patience at every stage of this research.

The support of the technicians of the Automotive Dept, Faculty of Engineering, Ain Shams University, is appreciated.

Summary

The object of the present work is to measure and study the interacting forces between the tyre and the road surface in the contact patch in case of small obstacles of different heights and under different tyre operating conditions. To realise this object a test-rig was prepared and equipped with a force dynamometer for measuring both the vertical and the longitudinal dynamic forces in the contact patch, the experimental investigation was designed to obtain the effect of the inflation pressure, the tyre deflection and the obstacle configuration under tyre rolling condition. The rig was also equipped with a data acquisition system, capable of recording the analogue signal and converting it to digital one, was used in collecting and analyses of the acting forces. A module unit was used to supply power and balancing volt to the used sensors. Two main groups of experiments were conducted. The first group was done on a free rolling tyre rotating against a 1.5 m diameter flywheel. The second group was conducting by introducing obstacles of different heights with different centre distance between the obstacle and the dynamometer.

The results of the experimental work were presented as force distribution around the middle of the contact patch. The distribution of the vertical force in case of free rolling shows a small deviation of the peaks towards the leading side of the contact patch. This indicates the correct direction and the value of the rolling resistance, in case of enveloping an obstacle the vertical force distribution shows a concentration in the obstacle zone and relieve of forces in the neighbourhood.

The distribution of the vertical forces far from the neighbourhood is similar to the case of free rolling. The distribution of the longitudinal forces in the contact patch in case of free rolling shows an asymmetric distribution around the lateral axis.

A positive force in the leading side due to the compression of the tyre before interring the contact zone is followed by a negative force in the trailing side due to tread relief. In case of enveloping an obstacle the longitudinal distribution is dependent on both the obstacle height and its circumfrential distance from the dynamometer to a great extent.

Table of Contents

		Page
Acknowledgeme	nt	i
Summary		ji
Table of Content	ts	iv
Nomenclature		vii
CHAPTER (1)	Introduction	1
CHAPTER (2)	Literature Survey	3
CHAPTER (3)	Experimental Work	13
	3.1 The Test Rig	13
	3.1.1 The Flywheel	14
	3.1.2 The Obstacles	14
	3.1.3 The Tyre Fixation and Loading	17
	3.1.4 The Tyre Alignment	17
	3.1.5 The Drive Line	17
	3.2 Instrumentation	18
	3.2.1 Measuring Dynamometer	18
	3.2.2 Slip Rings Unit	19
	3.2.3 Dynamometer/Slip Rings Connection wires	22
	3.2.4 Connection Box	22
	3.2.5 Data Acquisition Module	24
	3.2.6 Multifunction I/O Board	24
	3.2.7 Digital Computer	25
	3.2.8 Data Acquisition Software	25
	3.2.9 Digital Speedometer	25

	3.210 Inflation Pressure Meter	25
	3.3 Calibration	26
	3.3.1 Vertical Force Calibration	26
	3.3.2 Longitudinal Force Calibration	26
	3.3.3 Relationship Between Tyre Contact	
	Length and Deflection	28
CHAPTER (4)	Experimental Tests And Results	31
	4.1 Test Preparation	31
	4.2 Test Procedure	33
	4.3 Test Results and Data Files	33
	4.4 Data Manipulation and Utilisation	
	Of GRAPHER Software	34
	4.5 Experimental Results	34
	4.5.1 Introduction	34
	4.5.2 Contact Length and Number Of	
	Data Points Relation	35
	4.5.3 Results Of Free Rolling	36
	4.5.4 Results Of Obstacle Height	37
	4.5.5 Results Of Obstacle Position	38
	4.5.6 Results Of Tyre Inflation Pressure	
	and Deflection	39
CHAPTER (5)	Discussion	89
	5.1 Free Rolling	89
	5.2 Effects Of Obstacle Height	91
	5.2.1 Effects On Vertical Force Response	91

REFERENCES APPENDICES		109 111
CHAPTER (6)	Conclusions And Recommendations	106
	Patch on the Vertical Force Distribution	104
	5.6 The Effect of Obstacle Location in the Contact	
	Of Its Distance From The Obstacle	102
	At A Point In The Contact Patch As A Function	
	5.5 The Variation Of The Vertical Force Magnitude	
	5.4.2 Effects On Longitudinal Force Response	99
	5.4.1 Effects On Vertical Force Response	98
	Deflection	98
	5.4 Effects Of Tyre Inflation Pressure and	
	5.3.2 Effects On Longitudinal Force Response	96
	5.3.1 Effects On Vertical Force Response	95
	5.3 Effects Of Obstacle Position	95
	5.2.2 Effects On Longitudinal Force Response	92

Nomenclature Nomenclature

d	total tyre deflection	[mm]
\mathbf{d}_1	tyre deflection due to a flat surface, Appendix (A.2)	[mm]
d_2	extra tyre deflection due to the flywheel	
	curvature, Appendix (A.2)	$[\mathbf{mm}]$
F	calibration force applied to	
	the dynamometer, Appendix (A.1)	[N]
$H_{y2/y1}(\Omega)$	tyre enveloping function, equation (2.1)	
h	obstacle height	[mm]
1	half contact length, equation (2.1)	[cm]
L	distance between obstacle centre and	
	the dynamometer centre	[mm]
$\mathbf{L}_{\mathtt{c}}$	contact patch length, equation (4.1)	[cm]
n	flywheel speed, equation (4.1)	[rpm]
p	tyre inflation pressure	[kPa]
R	flywheel radius	[mm]
r	tyre radius, Appendix (A.2)	[mm]
v	translational velocity	[m/s]
W	tyre total vertical load, equation (4.2)	[N]
w	calibration weights, Appendix (A.1)	[N]

Subscripts

yl original road surface irregularities, equation	(2.1)	
---	-------	--

y2 filtered road profile, equation (2.1)

Greek symbols

Ω spatial frequency, equation (2.1)

List Of Figures

CHAPTER (2)	
Fig. (2.1) Tyre enveloping function derived	
from experimental results.	3
Fig. (2.2) Schematic representation of test tyres on drums.	7
Fig. (2.3) Test wheel on flat rotating disc	7
Fig. (2.4) Endless belt tyre tester	8
Fig. (2.5) belt tyre tester equipped with an	
electro-hydraulic vibrator.	8
Fig. (2.6) Schematic representation of Cornell tyre tester	9
Fig. (2.7) Wheel hub force-time histories	11
CHAPTER (3)	
Fig. (3.1) General layout of the test rig.	15
Fig. (3.2) Obstacle fixation on the flywheel surface.	16
Fig. (3.3) Dynamometer strain gauges.	20
Fig. (3.4) Dynamometer fixation	21
Fig. (3.5) The slip rings construction	23
Fig. (3.6) The arrangement for vertical force calibration	27
Fig. (3.7) The arrangement for longitudinal force calibration	29
Fig. (3.8) Experimental foot print of the test tyre	
for different deflections	30
CHAPTER(4)	
Figures. (4.1-4.4) Effect of tyre deflection on the vertical	
and longitudinal force distribution in case of free rolling	
for different inflation pressures 41	- 44
Fig. (4.5) The vertical force versus tyre deflections at constant	;
inflation pressure for free rolling	45
Fig. (4.6) The vertical force versus tyre inflation pressure at	
constant deflections for free rolling	46
Figures (4.7-4.13) Effect of obstacle height on dynamometer	
vertical and longitudinal forces for	
	- 53
Figures (4.14-4.21) Effect of obstacle position on dynamomete	r
vertical and longitudinal forces for	
different obstacle heights 54	- 61

Figures (4.22-4.28) Effect of tyre inflation pressure and def	lection
on dynamometer vertical and longitudinal forces for	
obstacle height = 3 mm, at different obstacle locations	62 - 68
Figures (4.29-4.35) Effect of tyre inflation pressure and def	lection
on dynamometer vertical and longitudinal forces for	
obstacle height = 5 mm, at different obstacle locations	69 - 75
Fig.(4.36) Effect of tyre deflection on dynamometer vertical	İ
and longitudinal forces	76
Figures (4.37-4.39) Effect of tyre inflation pressure on	
dynamometer vertical and longitudinal forces for different	
deflections	77 - 79
Fig.(4.40) Effect of tyre inflation pressure on dynamometer	
vertical and longitudinal forces for obstacle over	
the dynamometer	80
Figures (4.41&4.42) Effect of centre distance between the	
dynamometer and obstacle on the vertical force response	81
Figures (4.43-4.49) Vertical force distribution for obstacle	
height = 3 mm, at different location points	
in the contact patch	82 - 88
CHAPTER(5)	
Fig. (5.1) Theoretical longitudinal forces	90
Fig. (5.2) Tyre tread deformation around an obstacle	93
Fig. (5.3) Effect of obstacle on the longitudinal forces	93
APPENDIX (A)	
Fig. (A1.1) Calibration curve for the vertical force	115
Fig. (A1.2) Calibration curve for the longitudinal force	116
Fig. (A2.1) Tyre contact on a flywheel	120
Fig. (A2.2) Tyre/Road contact length versus tyre deflection	121

CHAPTER (1)

Introduction

The combination of road, tyre, vehicle and driver form one complete interacting system. The characteristics of the vehicle may be described in terms of its performance, handling and ride. The driver response to vehicle vibration, which may be induced by a variety of sources including surface irregularities, aerodynamic forces and vibration of the engine and transmission, is reflected on the performance of the vehicle.

The mechanical characteristics of the tyre in contact with the road must be considered within the vehicle mechanics. The structure of the pneumatic tyres is considered complex. This makes its behaviour unpredictable by a satisfactory theory. An important property of a pneumatic tyre is its ability to cushion a vehicle against road irregularities.

In modern highway vehicles most of the primary control and reacting forces which are applied to the vehicle, with the exception of aerodynamic forces, are generated in the tyre-road contact patch. Thus, it has been said that "the critical control forces that determine how a vehicle turns, brakes and accelerates are developed in the contact patches which has an area not bigger than a man's hand".

A thorough understanding of the relationship between tyre, its operating conditions, and the resulting forces and moments developed at the contact patch is an essential aspect of the dynamics of the total vehicle.

The tyre serves essentially four basic functions:

- Sustains vehicle load,
- 2) Transmits the drive force and the braking force to the road surface,