RE-EVALUATION OF SURGICAL MARGIN OF RESECTED BREAST CANCER BASED ON DNA PATTERN & P 21 EXPRESSION.

THESIS

Submitted In Partial Fulfillment
Of M.S Degree In General Surgery

6/6.99449

8 *y*

447c9

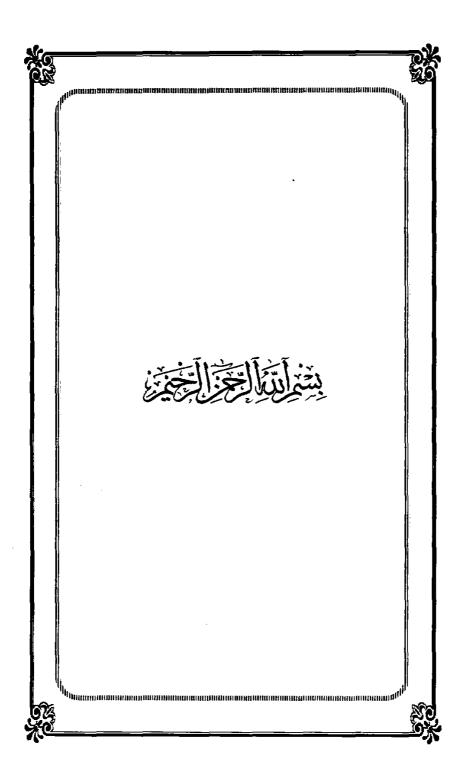
Lotfy Salah El Den Mohamed Hasan (MB, B, CH)

SUPERVISED BY

Prof. Dr.: Fateen Abdel Moneim Anous

Assistant Professor of General Surgery
Ain Shams University

Prof. Dr. : **Sanaa Eissa** Assistant Prof. Biochemistry Ain Shams University


Dr.: **Tarek El-Sharkawy**Lecturer of Histopathology
Ain Shams University


Faculty of Medicine

Ain Shams University

1997

ACHNOWSED AMENT

I would like to express my deepest gratitude to **Professor Or. Fateen U. Unous.** for his valuable advices, kind supervision and continuous encouragement throughout the wholework.

Iwouldlike also to express my sincere thanks and appreciation to **Professor Or. Sanaa Eissa** for her great assistance, continuous guidance and supervision.

I would like to extent my appreciation to All My Colleagues for their great help.

List of Figures

	Page
Fig. (1)	
Survival of patient with untreated breast cancer	3
Fig. (2)	
Model of regulation of the RAS P 21 product	35
Fig. (3)	
Measurement region of flow cytometry	41
Fig. (4)	
Multi parameter flow measurements	44
Fig. (5)	
Signal processing in flow cytometer	46

List of Tables

	Page
Tab (1) Prognostic factors in breast cancer	21
Tab (2) Incidence of the DNA aneoploidy	57
Tab (3) Role of FCM over Histopathology	58
Tab (4) Relation between DNA aneoploidy and grade of tumor	59
Tab (5) DNA aneoploidy incidence in S1 & S2	59
Tab (6) The relation between DNA aneoploidy and type of tumo	г 61
Tab (7) Relation between DNA aneoploidy and L.N involved	62
Tab (8) Incidence of SPF in tumor, S1 & S2	63
Tab (9) Relation between SPF and L.N involved	64

Contents

	Page
Natural history of cancer breast	1
Histology of mammary gland	4
Pathology of breast cancer	6
Prognostic factors breast cancer	18
DNA aneoploidy in early breast cancer	29
Prognostic significance of DNA ploidy in breast cancer	31
The Ras family and P 21	34
P 21 expression in breast cancer	36
Flow-cytometry	38
Patients & methods	47
Results	55
Discussion	65
Summary & Conclusion	70
References	72
Arabic Summary	