PHYSIOLOGY OF MALE REPRODUCTION

THESIS

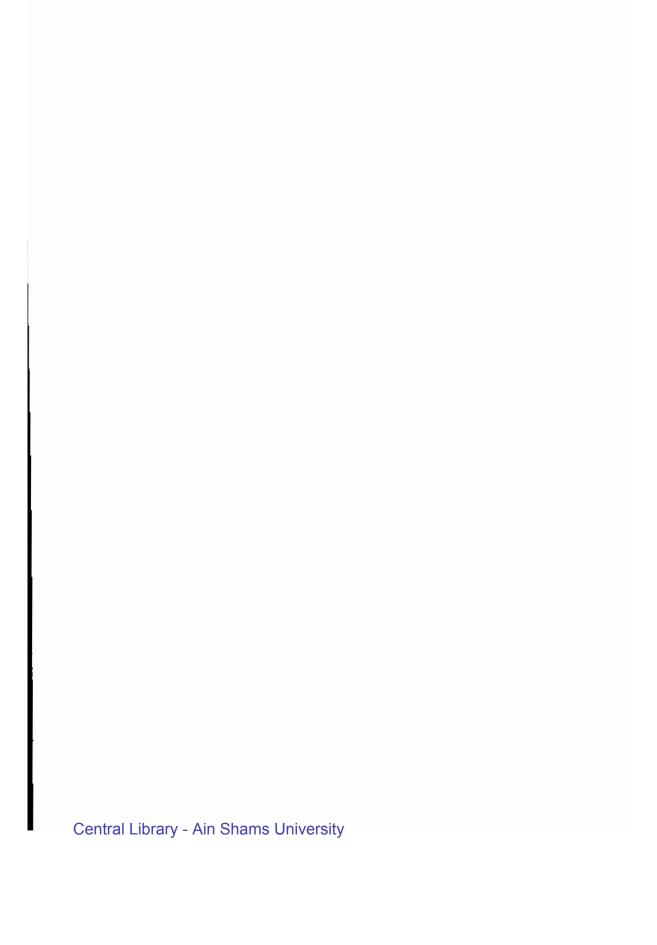
Submitted in Partial Fulfilment
For the Master Degree (Urology)

t

Presented By

KAMAL MORAD MORCOS

M. B; B. Ch.


Supervised by

Professor Dr. MOHAMED AMIN TAHA

Professor of Urology
Faculty of Medicine
Ain Shams University

1983

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to Prof. Dr. Mohamed Amin Taha, Professor of Urology, Ain Shams University, for his sincere help, valuable guidance and patient supervision throughout this work.

I am grateful to Professor Dr. Aly Maged, Head of Urology Department, Ain Shams University, for his kind approval to register this thesis.

I am also deeply thankful to all the staff members of Urology Department, Ain Shams University for their kind and generous help.

Page: ACKNOWLEDGEMENT INTRODUCTION CHAPTER I Extrahypothalamic Central Nervous System ... CHAPTER II Hypothalamus 2 CHAPTER III Pituitary Gonadotropins 5 CHAPTER IV Testis, Epididymis, and Vas deferens Testis 12 - Epididymis 27 - Vas deferens 35 CHAPTER V The Prostate and Seminal Vesicles 39 CHAPTER VI Sex Accessory Gland Secretions and Semen Analysis 59 CHAPTER VII Physiology of Erection, Emission, and Ejaculation 72 SUMMARY 75 REFERENCES 78

Central Library - Ain Shams University

ARABIC SUMMARY

INTRODUCTION

INTRODUCTION

The process of reproduction is one of the main functions of all living organisms. Hence, reproduction aims to maintain life and keep species.

Reproduction process varies in different species. In Amoeba, the individual organism multiplies by simple division, while in other species, as in Tinea worm, the individual organism is a hermaphrodite having both male and female reproductive systems.

The human reproduction, as well as in other mammalian, two partners, a male and a female are required for this process to be performed. This work is done to illustrate the basic information necessary to understand normal male reproductive physiology, and rationale for diagnosis and treatment of male infertility.

The physiology of male reproduction includes:

- The extrahypothalamic central nervous system.
- (2) The hypothalamus.
- (3) The pituitary gland and pituitary gonadotropins.
- (4) The testis, epididymis, and vas deferens.
- (5) The prostate and seminal vesicles.
- (6) Sex accessory gland secretion and semen analysis.
- (7) Erection, emission, and ejaculation.

The understanding of this reproductive physiology is critical for the assessment of hypogonadism, infertility, abnormal sex organ development (pseudohermaphroditism), delayed and precocious puberty, and may be important in the assessment and management of patients with benign hypertrophy and carcinoma of the prostate.

CHAPTER I

EXTRAHYPOTHALAMIC CENTRAL NERVOUS SYSTEM

EXTRAHYPOTHALAMIC CENTRAL NERVOUS SYSTEM

There is ample evidence in experimental animals that xtrahypothalamic brain tissue has both augmentary and nhibitory influences on reproductive function. The sensory ystems of olfaction and vision affect reproductive function n lower animals (Michael, 1975). Blind men do not appear to ave abnormal night-day patterns of blood, LH, FSH, or estosterone (Bodenheimer et al., 1973). Serum testosterone evels are depressed in mentally stressed men (Kreutz et al., 1972). The pathways by which extrahypothalamic input reaches he hypothalamus and the role of these signals on the release f gonadotropins require further investigation.

CHAPTER II HYPOTHALAMUS

THE HYPOTHALAMUS

The hypothalamus is the integrative center of reproductive monal axis. Both neural messages from central nervous system humoral messages from the testis act to modulate the secretor of hypothalamic gonadotropin-releasing hormones, which are eased into the hypophyseal-portal vessels that connect the ian eminence with the adenohypophysis. The hypothalamus tains a large number of nuclei that are responsible for eostatic control of many endocrine and non-endocrine systems. anterior and ventral-medial areas of the hypothalamus are ticularly involved in control of gonadotropin secretion g. 1).

Biogenic amines secretions from nerve terminals in othalamus have important influences on the secretion of einizing hormone-releasing hormone (LHRH).

Noradrenergic input (norepinephrine) augments secretion of LHRH.

Serotonergic input has inhibitory influences.

Dopamine has very important inhibitory effects.

The well-known effects of reserpine and chlorpromazine depression of reproductive function are due to their inhibitory ects on norepinephrine secretion (Sawyer, 1975).

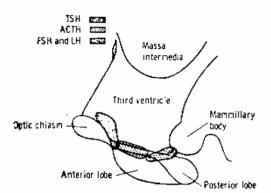


Fig. (1) Areas involved in the control of anterior praintary secretion in dogs. The sites were determined by the localization of lesions that produced selective blockade of tropic hormone secretion. (Redrawn and reproduced, with permission, from Ganong WF, in Comparative Endocrinology, Gorbman A [editor], Wiley, 1959.)

Gonadotropin-Releasing Hormones

The hypothalamus is the site of production of luteinizing ormone-releasing hormone (LHRH). A separate hypothalamic FSH-releasing factor has not been identified. It is uncertain whether or not there is a separate follicle-stimulating hormone-leasing hormone (FSHRH). The proponents of a single onadotropin-regulating hormone is referred to LHRH or GNRH.

LHRH is a decapeptide, and has stimulating effects on the ituitary gland that result in enhanced synthesis and release of oth LH and FSH (Schally et al., 1971).

At this time, clinically useful measurements of LHRH in ystemic blood are not available although many systems have been eveloped to assay LHRH in body fluids including bioassays and adioimmunoassays.

LHRH, when administered intravenously, acts rapidly resultng in prompt release of LH and, to a much lesser extent, FSH
nto the blood stream (Wollesen et al., 1976) (Fig. 2).

Testosterone has inhibitory effects on LH and FSH secretion fter LHRH administeration, while castration or hypogonadism esults in an augmented response (Marshall, 1975).

It was hoped that LHRH testing would distinguish patients ith hypogonadotropic hypogogonadism of pituitary origin from hose with hypothalamic disease. Unfortunately, some patients ith pituitary disease responded to LHRH while some with

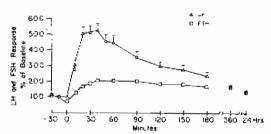


Fig. (2) Scrum LH and FSP response to a 300 kg bolus dose of LRH in normal men. A peak response of LRH is seen at 20 to 40 m notes after injection. (Modified from Wollesen F., Swerdloft R.S., and Odell, W. D., Metabolism 25,845 (1976.)