Ain Shams University Faculty of Engineering

CONSERVATION OF ENERGY IN LIGHTING SYSTEM DESIGN

BY

EHAB ABD EL-ALIEM SELIEM

33647

A THESIS

Submitted in Partial Fulfillment of The Requirements of the Degree of Master of Science in Electrical Engineering

621.3228 E. A

SUPERVISED BY

Prof. Dr. MAGDI M. A. SALAMA

Dept. of Elect. Power Machines Faculty of Engineering Ain Shams University

CAIRO - 1990

EXAMINERS COMMITTEE

Name . Title & Affiliation

<u>Signature</u>

- 1. Prof Dr. S. A. HASSAN

 Professor, Dept. of Elect. Power & Machines

 Dean, Shibien El-Koum Faculty of Engineering

 Menofia University.
- 2. Prof. Dr. A. K. EL-KHARASHI

 Head of Dept. of Elect. Power & Machines

 Faculty of Engineering, Ain Shams University.
- 3. Prof. Dr. MAGDI M. A. SALAMA

 Professor. Dept. of Elect. Power & Machines

 Faculty of Engineering, Ain Shams University.

Date: |3 / 8 /1990

STATMENT

This dissertation is submitted to Ain Shams
University for the degree of Master in Electrical
Engineering.

The work included in this thesis was carried out by the author in the Department of Electical Power and Machines, Ain Shams University, from 13 / 10 / 1986 to date.

No part of this thesis has been submitted for a degree or qualification at any other University or Institution.

Date : 13-8-1990

Signature: Elab Ad Wallier Solien

Name : Ehab Abd El-Aliem Seliem.

TABLE OF CONTENTS

SUMMARY		Ι
ACKNOWLE	DGEMENTS	II
ABBREVIA	TIONS	III
DEFINITI	ons	IV
CHAPTER	1 INTRODUCTION	1
1-1	Background	1
1-2	Objectives	2
CHAPTER	2 MANAGEMENT OF ELECTRIC LIGHTING SYSTEM DESIGN	4
2-1	Introduction	4
2-2	Energy Management Procedures	4
2-3	Concept of "Cost-of-Light"	6
2-4	Typical Example for Calculating the Cost-of-Light	15
CHAPTER	3 DAYLIGHT	22
3-1	Introduction	22
3-2	2 Daylight Source and Distribution	22
	3-2-1 The Sun as a Light Source	22
	3-2-2 The Sky as a Light Source	23
	3-2-3 The Ground as a Light Source	25
3-3	3 Window Orientation	26
3-4	4 Daylighting Design, Considerations	26
	3-4-1 Daylight Factor (DF)	27
	3-4-2 Measurement of Daylight Factor	27
	3-4-3 Daylight Factor Measuring Instruments	28
	3-4-4 Predicting and Measuring Daylight Factor	29

CHAPTER 4	METHOD	S OF DAYLIGHT FACTOR CALCULATION	31	
4-1	Calculation of Daylight Factor (DF) From Its			
	Components			
	4-1-1	Methods of Calculation of Sky		
		Component (SC) and the Externally		
		Reflected Component (ERC)	32	
		1. The BRS Simplified Sky Component Table	32	
		2. The BRS Daylight Factor Protractor	38	
		3. Waldrom Diagram	42	
		4. The Pilkington Method	42	
	4-1-2	Calculation of The Internally Reflected		
		Component (IRC)	46	
		1. Methods of Calculation of Internally		
		Reflected Component (IRC)	46	
		2. The BRS Split-Flux Formula	47	
	4-1-3	Calculation of Average Daylight Factor	52	
	4-1-4	Correction Factors for Daylight Factor	53	
4-2	Calcul	ation of Daylight Factor by CIE Method	56	
4-3	Calcul	ation of daylight Factor by Computers	59	
4-4	Typica	l Design Problem and Method of Solution	60	
CHAPTER 5	CONCLU	SION	65	
Appendix :	1		70	
Appendix 2	2		73	
References	s		I	

LIST OF TABLES

Table (1-1)	Cost comparison for 5000 burning hours.	5
Table (1-2)	Energy management.	7
Table (2-1)	Annual hours of darkness for longitudes.	
	10 deg. E.	13
Table (4-1)	Sky component (CIE standard overcast sky)	
	for vertical rectangular windows with	
	clean clear glass.	33
Table (4-2)	Pilkington internally reflected component	
	table, values of a	48
Table (4-3)	Pilkington internally reflected component	
	table, values of v	48
Table (4-4)	Pilkington internally reflected component	
	table, values of e	48
Table (4-5)	Minimum internally reflected component	
	of daylight factor,	
	BRS simplified (IRC) table.	49
Table (4-6)	Effect of external obstruction on,	
	internally reflected component.	51
Table (4-7)	Conversion of average to minimum	
	internally reflected component.	51
Table (4-8)	Correction factors for deterioration	
	of decoration.	54
Table (4-9)	Correction factors for dirt on glass.	54

LIST OF FIGURES

Fig.	(2-1)	Luminaire dirt depreciation factor,	
		for six luminaire categories and five	
		degrees of dirtiness.	12
Fig.	(3-1)	Solar altitude and azimuth for	
		different latitudes.	24
Fig.	(4-1)	Derivation of sky component of daylight	
		factor (CIE overcast sky) for vertical	
		rectangular windows	35
Fig.	(4-2)	A window with a high sill, and reference	
		point out side the width of the window	35
Fig.	(4-3)	A window with the sill on the working	
		plane, and the reference point on the	
		centre of the window. A continuous external	
		obstruction is parallel to the window.	37
Fig.	(4-4)	Building Research Station protractors	40
Fig.	(4-5)	Waldrom diagram for CIE overcast sky and	
		vertically glazed apertures.	43
Fig.	(4-6)	Estimation of sky component and externally	
		reflected component of daylight factor by	
		Pilkington method.	45
Fig.	(4-7)	Estimation of daylight factor by	
		CIE method.	58

Fig.	(4-8)	Calculation of daylight factor by	
		CIE method.	59
Fig.	(4-9)	Design of combined electric lighting,	
		daylighting installation :	
		assumed room dimensions.	61
Fig.	(4-10)	Design of combined electric lighting,	
		daylighting installation :	
		assumed layout of luminaires	61

SUMMARY

The objective of this thesis is to develop a method to calculate the saving in the cost of an existing artificial lighting system in an office room in an office building when relamping the system by another energy efficient lamps, replacing the system by another energy saver artificial system or by a system combining between daylighting and artificial lighting. The latter is considerably elaborated since utilisation of daylighting becomes now one of the most important energy efficient techniques in lighting system design.

In this thesis, the various methods for calculating the daylighting level at the reference point on the working plane area by means of calculating the daylight factor "DF" are summarised. Finally the thesis concludes by a comparison between relamping the artificial lighting system and the combination between daylighting- artificial lighting system, the resulting reduction in the life-cycle-cost.

ACKNOWLEDGEMENTS

Great thanks to GOD for helping to complete this work. Many thanks to my father for encouraging me to continue my way into higher studies.

I wish to acknowledge, with appreciation and gratitude Professor Dr.Magdi M. Salama for his supervision, valuable support and guidance, throughout the thesis.

Also i wish to thank my colleagues at Dar Al-Handasah Consultants, and every body who assisted me in preparing this thesis.

ABBREVIATIONS

AEG Allgemeine Elektricitats- Gesellschaft.

bre Building Research Establishment Digest.

BRS Building Research Station.

CIBS Chartered Institution of Building Services.

CIE Commission International de l'Eclairage.

EC&M Electrical Construction and Maintenance.

LD&A Lighting Design and Application.

IES Illuminating Engineering Society.

IEEE Institute of Electrical and Electronics Engineers.

ilr international lighting review.

DF Daylight Factor.

SC Sky Component of Daylight Factor.

ERC Externally Reflected Component of Daylight Factor.

IRC Internally Reflected Component of Daylight Factor.

HVAC Heat Ventilation and Air-Conditioning System.

D Luminaire dirt depreciation Factor.

DEFINITIONS

Energy Conservation:

Energy conservation deals with Engineering, Design, Application, Utilisation and to some extent the operation and maintenance of the electric power systems to provide for the optimal use of energy. Optimal in this case refers to the design or modification of a system to use minimum overall energy where the potential or real energy savings are justified on an economic or cost benefit basis. Optimisation also involves factors such as comfort, healthful working conditions, the practical aspects of productivity, aesthetic acceptability of the space and public relations.

Energy Management:

Energy management is the more inclusive term for energy conservation, involving many professions and fields such as Engineering, Organisation, Economic and Financial Analysis, Operation Research, Metering and Measurement and Control Systems.

Daylight Factor(DF): Daylight Factor at a point indoor is defined as the illuminance received at that point from a sky of known or assumed luminance

distribution expressed as a percentage of the horizontal illuminance outdoor from an unobstructed hemisphere of the same sky.

Direct sunlight is excluded from both illuminances.

It is usually considered that the Daylight
Factor comprises three components; the sky
component, the externally reflected component
and the internally reflected component.

Sky Component(SC):

Sky Component is the ratio of that part of the daylight illuminance at a point on a given plane which is received directly from a sky of assumed or known luminance distribution, to the illuminance on a horizontal plane due to an unobstructed hemisphere of this sky.

Direct sunlight is excluded from both values of illuminances.

Externally Reflected
Component(ERC):

Externally Reflected Component is the ratio of that part of daylight illuminance at a point on a given plane which received directly from external reflecting surfaces illuminated directly or indirectly by a sky of assumed or known luminance distribution,