تأثير التلويث على نبات المانجروف (الشورة) على ساحل البحر الأحمر بمصر

رسالة مقدمة من الطالبة مارينا روجيه نبيه سمعان مارينا روجيه نبيه سمعان بكالوريوس علوم (نبات . كيمياء) كلية العلوم . جامعة عين شمس . 2010

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية

> قسم العلوم الأساسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

صفحة الموافقة على الرسالة تأثير التلوث على الإسالة المدر الأحمر بمصر المدر الأحمر بمصر

رسالة مقدمة من الطالبة مارينا روجيه نبيه سمعان مارينا روجيه نبيه سمعان بكالوريوس علوم (نبات . كيمياء) كلية العلوم . جامعة عين شمس . 2010 لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الأساسية البيئية

وقد تمت مناقشة الرسالة والموافقة عليها:

اللجنة: التوقيع

1- ا.د/كوثر محمد توفيق

أستاذ فسيولوجيا النبات قسم علوم النبات . كلية البنات للآداب والعلوم والتربية جامعة عين شمس

2- ا.د /محمود عبد الراضى دار أستاذ البيئة البحرية المعهد القومى لعلوم البحار والمصايد بالغردقة

-3 ا.د \sqrt{n} محمد غريب المالكى أستاذ الجيوفيزياء البيئية بقسم العلوم الأساسية البيئية معهد الدراسات والبحوث البيئية جامعة عين شمس

4- ۱.د/لطقى محسن حسن أستاذ البيئة النباتية والفلورا . كلية العلوم جامعة حلوان

تأثير التلويث على نبابت المانجروض (الشورة) على ساحل البحر الأحمر بمصر

رسالة مقدمة من الطالبة مارينا روجيه نبيه سمعان مارينا روجيه نبيه سمعان بكالوريوس علوم (نبات . كيمياء) كلية العلوم . جامعة عين شمس . 2010

لاستكمال متطلبات الحصول علي درجة الماجستير في العلوم البيئية قسم العلوم الأساسية البيئية

تحت إشراف:-

1- ا.د/كوثر محمد توفيق

أستاذ فسيولوجيا النبات قسم علوم النبات . كلية البنات للآداب والعلوم والتربية جامعة عين شمس

2- د./أحمد أحمد محمد خلف الله

مدرس (بيئة نباتية) قسم علوم النبات . كلية البنات للآداب والعلوم والتربية جامعة عين شمس

2- د./محمود عبد الراضى دار

أستاذ مساعد البيئة البحرية

المعهد القومى لعلوم البحار والمصايد بالغردقة

ختم الإجازة:

أُجِيزُت الرسالة بتاريخ / /2015

2015/ موافقة مجلس المعهد / 2015/ موافقة مجلس الجامعة /

2015

THE IMPACT OF POLLUTION ON MANGROVE PLANT (AVICENNIA MARINA) ON THE RED SEA COAST OF EGYPT

Submitted By Marina Rogah Nabih Samaan

B.Sc. of Science (Botany-Chemistry, Faculty of Science, Ain Shams University, 2010

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences

Department of Environmental Basic Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET

THE IMPACT OF POLLUTION ON MANGROVE PLANT (AVICENNIA MARINA) ON THE RED SEA COAST OF EGYPT

Submitted By

Marina Rogah Nabih Samaan

B.Sc. of Science (Botany-Chemistry, Faculty of Science, Ain Shams University, 2010

This thesis Towards a Master Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Kawther Mohamed Tawfik

Prof. of Plant Physiology, Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

2 Prof .Dr. Mahmoud Abdel-Radi Dar

Prof. of Marine Ecology National Institute of Oceanography and Fisheries -Hurghada

3-Prof. Dr. Mohamed Gharib El-Malky

Prof. of Environmental Geophysics, Department of Environmental Basic Sciences – Institute of Environmental Studies and Research Ain Shams University

4-Prof. Dr. Lotfy Mohsen Hassan

Prof. of Plant Ecology and Flora, Botany Department Faculty of Science Helwan University

2015

THE IMPACT OF POLLUTION ON MANGROVE PLANT (AVICENNIA MARINA) ON THE RED SEA COAST OF EGYPT

Submitted By

Marina Rogah Nabih Samaan

B.Sc. of Science (Botany-Chemistry, Faculty of Science, Ain Shams University, 2010

A thesis submitted in Partial Fulfillment
Of
The Requirement for the Master Degree
In
Environmental Sciences
Department of Environmental Basic Sciences

Under The Supervision of:

1-Prof. Dr. Kawther Mohamed Tawfik

Prof. of Plant Physiology, Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

2-Dr. Ahmed Ahmed Mohamed Khalafallah

Lecturer of Plant Ecology, Botany Department Faculty of Women for Arts, Science and Education Ain Shams University

3- Dr. Mahmoud Abdel-Radi Dar

Assistant Prof. of Marine Ecology National Institute of Oceanography and Fisheries -Hurghada

Acknowledgement

"Firstly, unlimited thanks to Allah"

I express my deep gratitude and appreciation to *Prof.* Kawther Mohamed Tawfik Professor of plant physiology, Botany Dept., Faculty of Women for Arts, Sience and Education, Ain Shams University. She has been kind enough to provide critical advice and guidance throughout the investigation, which provided the foundations of this study.

My sincere thanks are due to *Prof. Mahmoud Abdel-Rady Dar* Professor of Marine Ecology, National Institute of Oceanography and Fisheries, Hurghada and *Dr. Ahmed Ahmed KalafAllah.*, Lecturer of Plant Ecology, Botany Dept., Faculty of Women for Arts, Sience and Education, Ain Shams University for supervision, continuous encouragement, generous help in all respects during this investigation and during the experimental work.

Sincere thanks are also due to Prof. Hala Abdel-Hamid Kassem Professor of medical insects and Vice Dean for Graduate Studies and Research, Institute of Environmental Studies and Research, Ain Shams University for her fruitful assistance, her constant encouragement is highly appreciated.

I am also grateful to *Dr. Taha Abdel-Razik* present head of Basic Science Depart, Institute of Environmental Studies and Research and also extended to the staff members of Institute of Environmental Studies and Research, Ain Shams University.

Contents

Subject	Page
ACKNOWLEDGMENT	I
CONTENTS	II
LIST OF TABLES	IV
LIST OF FIGURES	VI
LIST OF APPREVIATION	VII
ABSTRACT	XI
INTRODUCTION	1
REVIEW OF LITERATURES	3
Importance of mangrove	3
The Mangrove threats	5
Heavy metals concentration in mangrove compartments	7
Heavy metals concentration in sea water	7
Heavy metals concentration in sediments	9
Mangrove forests as a sink of heavy metals	12
Heavy metals uptake, accumulation and translocation	15
Heavy metals effects on plants and plant defense mechanism	21
Variations in total phenolic compounds concentration of	23
mangrove plants	
Total phenolic concentrations in mangrove plants	24
MATERIALS AND METHODS	27
Sites of study	27
Vegetative analysis	28
Sampling technique	28
Grain size analysis	29
Heavy metal analysis	29
Heavy metal analysis in water	29
Heavy metal analysis in sediments	30
Heavy metal analysis in plant	30
Bio-concentration and translocation factors	31
Total phenolic compounds analysis	31
Extraction	31
Estimation	32
Statistical analysis	32
Geomorphic settings of the studied localities	35
1- Um Dehais Mangrove Shrubs	35
2- Abo Mingar Island	35
3- Km 17 S. Safaga	36

4- Wadi Abu Hamra mangrove forest	36	
5- Sharm El Bahari	37	
6- Wadi Al-Gemal	37	
7- North Qula'an area	38	
8- Hamata mangrove	38	
9- Wadi Lehmi downstream	38	
Results and Discussions	43	
Vegetative analysis	43	
Heavy metals in mangrove habitats	48	
Heavy metals in slack water of the mangrove swamps	48	
Sediment characteristics	5 1	
Heavy metals accumulation in the underlying sediments	54	
Metals interactions within bulk sediments and the	62	
sediments fractions		
Heavy metal concentrations in Avicennia marina plants	66	
Bio-concentration and translocation of heavy metal within		
A. marina		
Correlation coefficient relationships:	81	
Toxic effect of heavy metals	84	
Bio-geochemical cycle and the factors influencing heavy	86	
metals enrichments and bio-availability:		
Total phenolic compounds		
SUMMARY	92	
CONCLUSION	98	
REFRENCES	100	

List of Tables

Table (1): Monthly meteorological normals of Red Sea for the	27
year 1983 – 1995 (Meteorological Office, Egypt)	21
Table (2):Studied sites latitudes along the Red sea coast	39
Table (3): Average values of some variables of A. marina	45
population at the four sites along Red Sea	73
Table (4): Size classes distribution in four locations along Red	46
Sea Cost.	70
	49
Table (5): The average contents of heavy metals in the slack	49
water in 9 sites of A. marina populations located at Red Sea	
Coast Table (C). The evenues quair size distribution in 0 sites of A	52
Table (6): The average grain size distribution in 9 sites of A.	52
marina populations located at Red Sea Coast	
Table (7): The average contents of heavy metals in the bulk	55
sediments in 9 sites of A. marina populations located at Red Sea	
Coast	
Table (8): The average contents of heavy metals in the fine	56
fraction Ø3 in 9 sites of A. marina populations located at Red Sea	
Coast	
Table (9): The average contents of heavy metals in the fine	58
fraction Ø4 in 9 sites of A. marina populations located at Red Sea	
Coast	
Table (10): The average contents of heavy metals in the fine	59
fraction Ø5 in 9 sites of A. marina populations located at Red Sea	
Coast	
Table (11): Results correlation coefficient between heavy metals	64
in the bulk samples and the different sediment fractions	
Table (12): The averages of heavy metals in roots of Avicennia	68
marina at 9 sites located at Red Sea Coast	
Table (13): The averages of heavy metals in leaves of Avicennia	69
marina at 9 sites located at Red Sea Coast	
Table (14): The averages of heavy metals in fruits of Avicennia	70
marina at 9 sites located at Red Sea Coast	
Table (15): bio-concentration factors of metals in A. marina	78
(root, leaves and fruits) at different localities	
Table (16): Translocation factors of metals in A. marina (leaves	80
and fruits) at different localities	
Table (17): Correlation coefficient between metals in roots,	82
leaves and fruits of Avicennia marina populations	

Fig (18): Total phenolic compounds of different parts of 89 A.marina among different situations

List of Figure

List of Figure	
Fig (1): Taking samples within the studied sites	33
Fig (2): Location map for the studied mangrove swamps along the Red Sea.	40
Fig (3): Satellite image of the studied localities (from Google Earth prog.)	41
Fig (4): Solid Wastes (plastic bags, bottles and Cutting wood) within the studied sites	42
Fig (5): Size classes percentage distribution of <i>A. marina</i> populations at; a) 17km South Safaga, b) Wadi Abu Hamra, c) Sharm El Bahari and d) Wadi Al Gemal along Red Sea Coast.	47
Fig (6): A. marina seedlings within the studied sites.	47
Fig. (7): Dendogram resulted from agglomerative clustering technique based on concentration of heavy metals in slack water of 9 sites of <i>Avicennia marina</i> populations located at Red sea Coast.	50
Fig. (8): Detrended Correspondence Analysis (DCA) ordination based on concentration of heavy metals in slack water of 9 localities of <i>Avicennia marina</i> populations located at Red sea Coast.	50
Fig (9): The variations among the sediment groups and fine fractions of 9 sites of A. marina populations located at Red Sea Coast.	53
Fig. (10): The average contents of heavy metals in the bulk sediments and the fine fractions (Ø3, Ø4 and Ø5) in 9 sites of A. marina populations located at Red Sea Coast.	60
Fig. (11): Dendogram resulted from agglomerative clustering technique based on concentration of heavy metals in bulk sediments of 9 sites of <i>Avicennia marina</i> sites located at Red Sea Coast.	61
Fig. (12): Detrended Correspondence Analysis (DCA) ordination based on concentration of heavy metals in bulk sediments of 9 sites of <i>Avicennia marina</i> located at Red Sea Coast.	62
Fig. (13): The interrelations of Fe, Zn, Mn and Ni in bulk sediments at 95% confidences.	65
Fig. (14): The interrelations of Fe, Zn, Mn and Pb in \emptyset 4 fraction at 95% confidences	66
Fig. (15): Heavy metal variations among the roots, leaves and fruits of <i>Avicennia marina</i> at 9 sites located at Red Sea Coast.	72
Fig. (16): Dendogram resulted from agglomerative clustering technique based on concentration of heavy metals in <i>A. marina</i> roots of 9 localities.	73

Fig. (17): Detrended Correspondence Analysis (DCA) ordination based on concentration of heavy metals in A. marina roots of 9 localities.	74
Fig. (18): Dendogram resulted from agglomerative clustering technique based on concentration of heavy metals in <i>A. marina</i> leaves of 9 localities	75
Fig. (19): Detrended Correspondence Analysis (DCA) ordination based on concentration of heavy metals in A. marina leaves of 9 localities.	75
Fig. (20): Dendogram resulted from agglomerative clustering technique based on concentration of heavy metals in <i>A. marina</i> fruits of 9 localities.	76
Fig. (21): Detrended Correspondence Analysis (DCA) ordination based on concentration of heavy metals in A. marina fruits of 9 localities.	76
Fig. (22): The relation between Cu and Ni in the mangrove fruits at 95% confidence.	82
Fig. (23): The interrelations between Zn, Cu and Ni in mangrove leaves at 95% confidences.	83
Fig. (24): The correlations of Zn with; Fe, Cu, Ni and Pb in mangrove roots at 95% confidences.	83
Fig (25) Old leaves were seen to turn yellow	85
Fig (26): Deformed roots within studied sites	86
Fig. (27): Total phenolic compounds of A.marina roots, leaves and fruits among different situations	89

List of Abbreviation

FAO Food and Agriculture Organization

IUCN I-IV International Union for Conservation of Nature

Category IV

GC/MS Gas chromatography—mass spectrometry
LC/MS Liquid chromatography—mass spectrometry
PERSGA/GEF Regional Organization for Conservation of

Environment of the Red Sea and Gulf of Aden/ Global

Environmental Facility

EEAA Egyptian Environmental Affairs Agency

SQGs Sediment Quality Guidelines

BCF Bio-concentration Factors

BSAFs Biota-Sediment Accumulation Factor

GAE Gallic Acid Equivalents
TPC Total Phenolic Compounds

AAS Atomic Absorption Spectrometer

APDC Ammonium Pyrrolidine Di-thiocarbamate

MIBK Methyl Isobutyl ketone
DDW Double Distilled Water
TF Translocation Factor

SPSS Statistical Package for the Social Sciences

ANOVA Analysis of Variance

LSD Least Significant Difference
CAP Community Analysis Package
TIFF Tagged Image File Format

DCA Detrended Correspondence Analysis

OM Organic Matter

ROS Reactive Oxygen Species