7,3,2,7

STUDY OF THE MECHANICAL PROPERTIES OF SOME ALLOYS

THESIS

Submitted in Partial Fulfilment of The Requirements for M. Sc. Degree Physics

To

The Faculty of Science
Ain Shams University
Caire, Arab Republic of Egypt

By

ENSHERAH ABD EL WAHAB HASSAN

B. Sc. Physics 1978

1985

فر/موجي

As the

ACKNOWLEDGEMENT

The auther is greatly indebted to professor Dr. Abd El Aziz Ali Mohamed, Head of the Physics Department for his kind supervision, continuous encouragement and valuable device.

The auther wishes to express her sincere gratitude to Assist. Professor Dr. Maher A.Afifi and Dr.Girgis Graiss, Solid State Laboratory, Department of Physics, Faculty of Education For their kind supervision, invaluable discussions and continued encouragement and help through this work.

My thanks are also due to Assist. Prof. Dr. F. Abd El-Salam, Solid State Lab. Dept., of Physics, Faculty of Education for valuable discussions and help during writting the thesis.


The auther wishes also to thank the colleages of the Solid State Laboratory, Department of Physics, Faculty of Education at which this work was conducted for the provision of laboratory facilities.

CONTENTS

	Page
ABSTRACT	
CHAPTER I	
INTRODUCTION	
1.1. Lattice Imperfection in Crystalline Solids	1
1.2. Interaction of solute atoms and point defects	
with Dislocations	3
1.3. Intersection of Dislocations	4
1.4. Grain boundaries	5
1.5. The Mechanical Behaviour of Solids	5
1.6. Solid Solution Alloys	6
1.7. Stored energy of cold work	7
1.8. Stress relaxation across grain boundaries in	
Metals	7
1.9. Internal friction of solids	8
1.10. Sources of internal friction in solids	9
1.11.Snoek Ordering	11
1.12.Koster peak	11
1.13. The Bordoni peaks and the hasiguti peaks	13
1.14.Brief review of previous work on pure Al and	
its Alloys	15
1.15.Object of the present work	24

•	Page
CHAPTER II	
EXPERIMENTAL_TECHNIQUES	
2.1. Introduction	25
2.2. Materials and heat Heatment	25
2.3. Microhardness	27
2.3.1. Vickers Micro-Hardness Tester	28
2.3.2. Factor affecting micro hardness measurements	31
2.4. Internal friction	33
2.4.1. Inverted torsion pendulum apparatus	33
2.4.2. Internal friction measurements	36
2.5. Electron Microscope of measurements	37
2.6. X-ray diffraction measurements	
	38
CHAPTER III	
RESULTS AND DISCUSSION	
3.1. Introduction	40
3.2. Effect of Ageing on Microhardness and Grain	40
Diameter for the invistigated samples	40
3.3. Activation energy calculations	48
3.4. Effect of pre-deformation on Internal friction	
measurements	52
3.4.1. Internal friction measurements of prede-	
formed pure Al samples	53
3.4.2. Internal friction measurements of prede-	
formed Al-Fe alloy samples	55
3.5. Isothermal internal friction measurements	57

	Page
CHAPTER IV	
CONCLUSION	
4.1. Conclusions	60
REFERENCES	61
ARABIC ARSTRACT	

ABSTRACT

The present work is an attempt to add some experimental information by studying the kinetics of impurity distribution within pure deformed matrix and the associated structural and mechanical variations throught measurements of microhardness, electron microscopy, X-rays and internal friction.

The materials used in the present study were obtained in the form of rods of both pure Al and Al-Fe alloy of about 0.8 cm diameter. The rods were homogenized for 20 hours at 500° C then slowly cooled to room temperature. The rods were either cold drown to get wires of 0.5 mm.diameter or cold rolled to get sheets of 0.8 mm thick. The investigated samples were heated for 1 hour at 550° C. then quenched to room temperature to bring the samples of each type to initially identical state.

Heat treatment of the samples was carried out under vacuum (10^{-4} torr) by using resistance coil-voltage stabilized furnace in the temperature range $250-400^{\circ}$ C with accuracy of \pm 2°C. Experimental observations aimed in one direction at clarifying the role of impurity atoms

on the annealing kinetics of pure Al, and on the other direction to trace the effect of predeformation on the parameters characterizing the heat treatment procedure of the investigated materials.

Room temperature microhardness and grain diameter measurements were traced for samples under two conditions:

- Samples preheated at different temperatures for measured times (isothermal annealing).
- 2. Samples heated for the same time at different preannealing tempeartures.

The behaviour of impurity atoms in the matrix as revealed by electron microscope measurements and the X-rays data were coincident with the results obtained from microhardness and grain diameter measurements.

While a single mechanism with activation energy of 1.1 eV, attributed to polygonization, was suggested for pure Al, two stages of complicated behaviour were observed for the alloy structure. The first stage was activated by 0.59 eV, a value characterizing a recovery process depending on vacancy impurity pairs migration associated with softening.

The second stage showed hardness increase to a peak value followed by resoftening. These processes were activated by 1.1 eV and 0.2 eV respectively and were attributed to pair dissociation and the state of final annealing stage of softened matrix including 1 largely wide spaced precipitates.

The kinetics of the precipitation reaction were analysed by applying Avrami's equation to the microhardness measurements obtained. The time exponent obtained supported the suggested mechanisms introduced to explain the different observed annealing stages.

The effect of predeformation as measured by the quantity ND/L on the behaviour of the investigated samples was traced through room temperature internal friction measurements.

The results in general showed the same sequence of softening obtained before in microhardness measurements and showed irregular change in internal friction by increasing predeformation.

The role of impurity atoms was clear in lowering both the level of internal friction values and the

range of variation of these values for the alloy samples than in pure Al.

It was found that the peak values increased and were shifted towards lower predeformation values by raising temperature for pure Al. On the contrary in the tested alloy although the internal friction peak values were lower than those of pure Al for the same temperatures, yet, these peaks were shifted to highier ND/L values

The activation energies obtained from internal friction measurements were the same as those obtained from microhardness measurements, so they were explained on the basis of the same proposed mechanisms.

As expected the highier values of internal friction were those obtained for larger grain size samples.

All the obtained results support the explanations based on the role played by lattice defects existing in the matrix and their interactions with impurity atoms which leads to effective variation on the density of mobile dislocations within the matrix.

CHAPTER I

CHAPTER I

INTRODUCTION

I.1. Lattice Imperfection In Crystalline Solids:

The study of lattice imperfections in metals has presently achieved very great importance in the field of physical metallurgy. Theories of work hardening, multiplication of dislocations, and interaction of point defects with dislocations during deformation are now quite basic in order that annealing mechanisms and plastic deformation might be understood.

The lattice, imperfections which are known to be present in crystalline solids, and affect their structure sensitive physical and mechanical properties are point defects including vacant sites interstitial atoms and impurities or foreign atoms, line defects or dislocations, and surface defects as stacing: Faults or any two dimensional network of dislocations.

a. Point Defects:

A point defect is an irrigularity in the crystal structure localized in the lattice. In a perfect crystal, when an atom leaves its usual site and goes into the spaces between the normal atom positions, a frenkel

type of point defects is formed. The lattice site vacated by the atom is called a vacancy.

A defect which is more or less the counter part of the vacancy is the interstitial atom. Schottky⁽²⁾ pointed that atoms might be found in places other than lattice sites and these arecalled interstitials, impurity atoms may also occupy interstitial sites, i.e. they may be squeezed into positions between the solvent atoms, although the energy of formation of the interstitial defect is higher than that of a vacancy yet its migration energy is much lower and therefore it is scarcely found at high temperature.

b. Line Defects

A line defect which is usually called dislocation, is a linear array of misplaced atoms extending over a considerable distance inside a lattice. The dislocation is the defect responsible for phenomenon of slip by which most metals deform plastically.

There are basically two different types of dislocations, edge dislocation was first presented by Taylor and Orowon⁽³⁾ and the screw dislocation presented by Burger ⁽⁴⁾. The strength of a dislocation is measured