ROLE OF VARIOUS RADIONUCLIDE AGENTS IN THE DIAGNOSIS AND FOLLOW UP OF PATIENTS WITH THYROID CARCINOMA

Essay

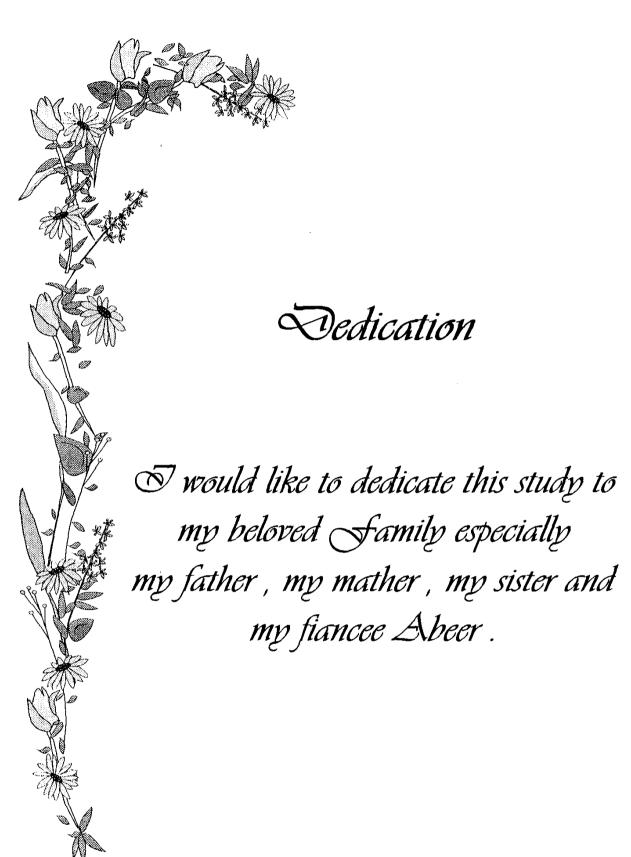
Submitted in partial fulfillment of

the Master Degree in Radiodiagnosis

By

DR / FAHD AHMED FADL M.B. Beh

SUPERVISED BY


PROF. DR. AHMED TALAAT KHAIRY

ASSISTANT PROFESSOR OF RADIODIAGNOSIS FACULTY OF MEDICINE EIN SHAMS UNIVERSITY

FACULTY OF MEDICINE EIN SHAMS UNIVERSITY 1994

MI would like to express my deepest appreciation to Prof. Dr.

Ahmed Talaat Khiry , Assistant professor of Radiodiagnosis,

Ain Shams University, for suggesting this subject, his kind patience

of the supervision and his continuous encouragement. He spent a

lot of time and did much effort revising every word in this essay. His

intellectual and constructive opinions were essential to dress this work its

final form.

I gratefully acknowledge all those who have helped me and shared in achieving this work.

List of figures

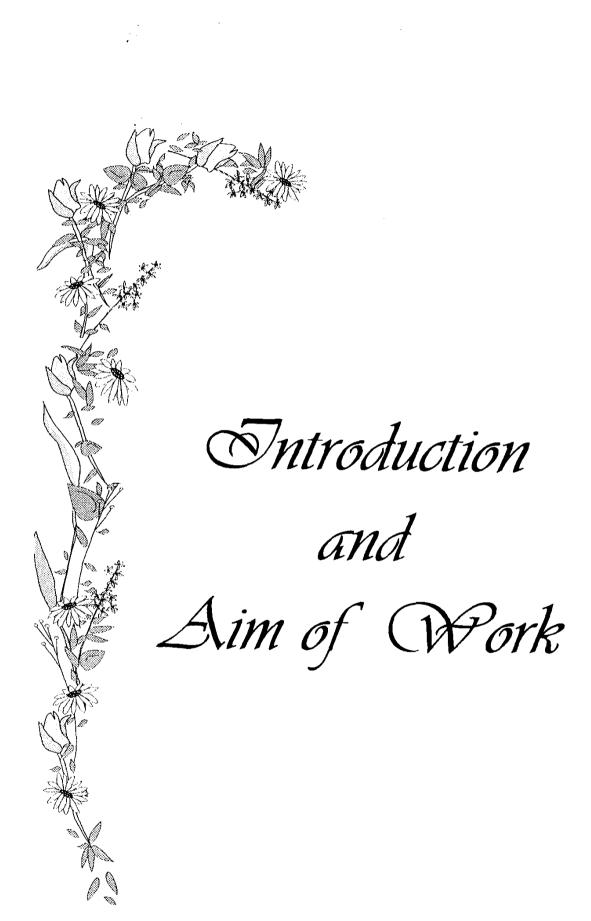

Fig	Title	Page
2 - 1	Thyroid lobes .	3
2 - 2	Crass-section of neck through thyroid gland.	3
2 - 3	Thyroid gland isthmus.	4
2 - 4	Thyroid gland vessel and nerves	5
3 - 1	Iodine and thyroid horone metabolism.	6
3 - 2	I (iodine) and tyroid trapping mertabolism and conversion of iodine to iodine	6
3 - 3	Thyroid hormone and method of blood transport of hormone	7
5 - 1	Schematic diagram of a gamma camera system	16
5 - 2	Schematic diagrams of the four basic types of collimators used in nuclear medicine	17

Fig	Title	Page
6 - 1	Normal thyroid imaging.	29
6 - 2	Asymmetry in a normal thyroidgland	30
6 - 3	Pyramidal lobes	31
6 - 4	Different examples of single cold area with features of tissue replacement consistent with malignancy	34
6 - 5	Both I-131 and Tl-201 positive skull lesion in patients with follicular thyroid carcinoma.	40
6 - 6	Proposed scheme for the follow- up of differentiated thyroid carcinoma.	43
6 - 7	Undifferentiated or anaplastic carcinoma	46
6 - 8	Anaplastic carcinoma (large cell type) .	47

Fig	Title	Page
6 - 10	Undifferentiated carcinoma.	49
6 - 11	Uptakle of Tc-99m (V) DMSA in a medullary carcinoma of the thyroid	52
6 - 12	Uptake of TI - 201 and Ga -67 in a medullary thyroid carcinoma.	53
6 - 13	T1 - 201 and I - 131 MIBG in a medullary thyroid carcinoma.	54
6 - 14	Sporadic MTC scintigraphy with with I-123 MIBG	55
6 - 15	Sporadic MTC (A) X ray (B) Somatostatin receptor scintigraphy	57
6 - 16	Sporadic MTC (A) planar somatostatic receptor image (B) SPECT of the neck	58
6 - 17	Sporadic MTC.	

CONTENTS

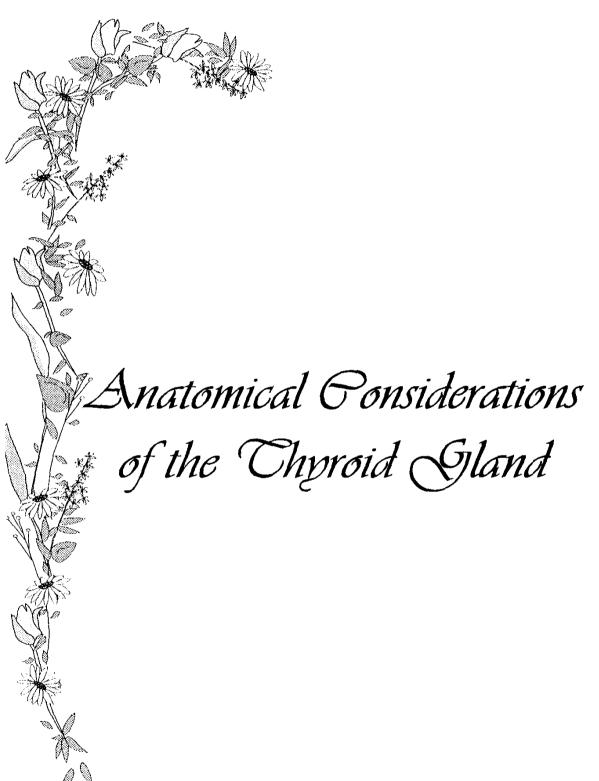
- 1 INTRODUCTION AND AIM OF WORK
- 2 ANATOMY OF THE THYROID GLAND
- 3 PHYSIOLOGICAL CONSIDERATIONS
- 4 PATHOLOGY OF THYROID CARCINOMA
- 5 BASES OF RADIONUCLIDE SCINTIGRAPHY
- 6 RADIONUCLIDE TECHNIQUES AND FINDING IN THYROID CARCINOMA
- 7 SUMMARY AND CONCLUSION
- 8 REFERENCES
- 9 ARABIC SUMMARY

INTRODUCTION AND AIM OF THE WORK

Thyroid imaging studies were the first to be widely used in nuclear medicine and the availability and number of types and studies have increased markedly over the past three decades.

Thyroid scintigraphy is helpful for virtually all anatomic and physiologic disorders of the thyroid gland.

Some of the more common uses are:


- (1) Determination of thyroid size.
- (2) Evaluation of thyroid enlargement.
- (3) Detection of thyroid carcinoma.
- (4) Detection and evaluation of thyroid nodules.
- (5) Determination of cause of hyperthyroidism.
- (6) Determination of cause of hypothyroidism.
- (7) Location of ectopic or aberrent thyroid tissue.
- (8) Suspicion of unilateral subacute or acute thyroiditis.
- (9) Postoperative evaluation of the thyroid gland.

Thyroid scintigraphy is one of the simplest, least expensive and potentially most efficacious nuclear imaging procedures availability. However, it is important to know what the scan can and can not do in terms of providing useful information in the patient with suspected thyroid disease.

The presence of a palpable nodule in the thyroid gland is a major indication for performing thyroid scintigraphy. Not infrequently, a "single" palpable nodule on the scan will prove to be in reality one of many such "cold" or "hot" areas in an enlarged gland. This finding often influences mangment toward medical rather than surgical therapy of the lesion(s). The relative radioisotope uptake of the nodule, as well as the presence of other areas of the etiology of the nodule and the advisability of operative removal.

Thyroid imaging can be performed with a number of different radiopharmaceuticals and imaging instruments. There is no imaging ideal method since each technique has its own advantages and disadvantages.

This study discusses the various radiopharmaceuticals that can be employed to establish the diagnosis and follow up of patients with thyroid carcinoma.

ANATOMICAL CONSIDERATIONS OF THE THYROID GLAND

The Thyroid Gland, brownish-red and highly vascular, is placed anteriorly in the lower neck, level with fifth cervical to the first thoracic vertebrae. Ensheathed by the pretracheal layer of deep cervical fascia, it has right and left lobes connected by a narrow, median isthmus. Its weight is usually about 25 grams but varies, being slightly heavier in females, and enlarging during menstruation and pregnancy (Gray, 1992).

Thyroid lobes:

They are approximately conical; their ascending apices diverge laterally to the level of the oblique lines on the laminae of the thyroid cartilages; their bases are level with the fourth or fifth tracheal cartilages. Each lobe is about 5 cm long, its greatest transverse and antroposterior extents being about 3 cm and 2 cm respectively. Its postromedial aspect is attached to the side of the cricoid cartilage by a lateral thyroid ligament.

The lateral (superficial) surface is convex and covered by *Sternothyroid*, whose attachment to the oblique thyroid line prevents the upper pole of the gland from extending onto the *Thyrohyoid* muscle. More anteriorly there are the *sternohyoid* and *superior belly of omohyoid*, overlapped inferiorly by the anterior border of *sternocleidomastoid* muscle.

The medial surface is adapted to the laryx and trachea, contacting at its superior pole the *inferior pharyngeal constrictor* and the posterior part of the *cricothyroid* muscles, which separate it from the posterior part of the thyroid lamina and the side of the cricoid cartilage.