

AN APPROACH FOR THE THREE-BODY FORCE EFFECT ON p-3He COLLISION

THESIS

Submitted for the Degree

of

Doctor of Philosophy in Science (Applied Mathematics)

تتوفيق البكرونبل التوفيق

By

Gamal Saddeek Ibrahim Mahmoud

56449

Supervised by

... Dr. Ahmed G. El-Sakka

Department of Mathematics Faculty of Science Ain Shams University Prof. Dr. Abou El-Magd A. Mohamed

Vice Dean
Faculty of Education
Ain Shams University

Dr. Mohamed A. Hassan

Associate Professor of Applied Mathematics

Department of Mathematics

Faculty of Science
Ain Shams University

SUBMITTED TO

Department of Mathematics Faculty of Science Ain Shams University

1996

ACKNOWLEDGMENT

First of all gratitude and thanks to LLLH who always helps and guides me.

The author is deeply indebted to **Dr. Mohamed A. Hassan**, Associate Professor, Department of Mathematics, Faculty of Science, Ain Shams University, for suggesting this line of research, kind supervision and systematic guidance. With his generous and fruitful discussions this work had been completed.

The author is also greatly grateful to Prof. Dr. Abou El-Magd A. Mohamed, Vice Dean, Faculty of Education, Ain Shams University, and Prof. Dr. Ahmed G. El-Sakka, Department of Mathematics, Faculty of Science, Ain Shams University, for their kind supervision, valuable advices, and paternal encouragement.

I am also thankful to **Prof. Dr. E. F. El-Shahawy**, Head of the department of Mathematics, Faculty of Education, Ain Shams University, for great facilities offered to me to prepare this thesis.

Many thanks are also due to Dr. Zeinab S. Hassan, Dr. Hassan. A. El-Arabawy and Mr. Tarek Nasr El-Din Salama, Department of Mathematics, Faculty of Science, Ain Shams University, for helping me during the preparation of the programs for this thesis.

CONTENTS

	Page
SUMMARY.	i
CHAPTER I: INTRODUCTION.	
§1.1: Introduction.	1
§1.2: Glauber Model.	6
CHAPTER II: THREE-BODY FORCE EFFECT ON p-3He ELASTIC SCATTERING.	
§2.1: An Approach for Many-Body Force in Glauber Theory.	10
§2.2: Proton- ³ He Profile Function.	19
§2.3: Proton- ³ He Elastic Scattering Amplitude.	21
§2.4: Results and Discussion.	29
CHAPTER III: THREE-BODY FORCE EFFECT ON p- ³ He INELASTIC SCATTERING.	
§3.1: Dissociation Differential Cross Section.	43
§3.2: The Sum of Elastic and Inelastic Differential Cross Section	46
§3.3: Three-Body Force Correction in Inelastic Scattering Differential Cross Sections.	48
§3.4: Results and Discussion.	50

CHAPTER IV: THE TOTAL CROSS SECTION OF PROTON- ³ He COLLISION.	Page
§4.1: Introduction.	63
§4.2: Proton- ³ He Total Cross Section	64
§4.3: Results and Discussion.	66
§4.4: General Conclusion.	69
References	70
Arabic Summary	

SUMMARY

This thesis is concerned with the study of three-body force effect on p-3He collision at intermediate and high-energies in the framework of Glauber high energy approximation. A simple approach is used to include the three-body force effect in the Glauber formalism. Using this corrected formalism, different cross sections of p-3He collision are calculated.

The thesis consists of four chapters as follows:

Chapter I.

In this chapter, a brief presentation of the three-body force effect on the calculations of the three-nucleon system, specially, of the nucleon-nucleus collision in references are given. Also, a simple formulation of the high energy approximation of Glauber, which is used in calculations, is presented.

Chapter II.

In this chapter, the used approach of the three-body force effect in the framework of Glauber high-energy approximation is presented. The $p-^3He$ elastic scattering amplitude-including the three-body force effect-is obtained. Using this amplitude the $p-^3He$ elastic scattering differential cross section at the energies 0.6 and 1 GeV is calculated for different values of the three-body force parameters B and γ . Also, for comparison, is calculated the same quantity at the same energies without the three-body force correction. A good agreement with the experimental data at 0.6 and 1 GeV for the values 0.54 and -0.35 of the three-body force parameter B, respectively, is obtained, with the value $13 \, (\text{GeV/c})^{-2}$ of the three-body force radius parameter γ . The most contributions of the three-body force correction are coming

from the single-scattering terms, while the three-body force effect on the double-scattering terms can be neglected. We see that, the results of p⁻³He elastic scattering at the used energies, show that, the three-body force effect should be taken into account in the calculations.

Chapter III.

The general form of the differential cross section $\frac{d\sigma_s}{d\Omega}$ of the sum of p-3He elastic and inelastic scattering with dissociation of ³He nucleus into two or three particles, including the three-body force effect, is obtained. This differential cross section $\frac{d\sigma_s}{d\Omega}$ is calculated at 0.6 and 1 GeV for different values of the three-body force parameter B using $\gamma = 13 (\text{GeV/c})^{-2}$. Also, is calculated at the same energies- p-3He dissociation differential cross section $\frac{d\sigma^{dis}}{d\Omega}$ for B=0.54 and -0.35, respectively, with the same value of γ . For both $\frac{d\sigma_s}{d\Omega}$ and $\frac{d\sigma^{dis}}{d\Omega}$ the clear dependence on the three-body force parameter B is observed for different values of the momentum transfer squared. The three-body force effect leads to increasing the dissociation cross section

Chapter IV.

 $p-^3$ He total cross section is calculated in the range 15-60(GeV/c) of incident momentum. A clear effect for the three-body force effect on the total cross section is observed. The experimental data of $p-^3$ He total cross section at 1 GeV is obtained with the value -0.117 for the three-body force parameter B and $\gamma = 13(GeV/c)^{-2}$.

Therefore, we can say that the three-body force effect plays an important role in the study of p-3He collision and must be taken into account, in the calculations.