Discectomy And Fusion Techniques Versus Discectomy alone In Management Of Recurrent Herniated Lumbar Disc

A Systematic Review

A dissertation submitted in partial fulfillment of the conditions for the award of a Master Degree In Neurosurgery

By:

George Halim Ibrahim

*M. B., B. Ch.*Faculty of Medicine, Ain Shams University

Under supervision of

Prof. Dr. Ashraf Gamal El Din AlAbyad

Professor of Neurosurgery
Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Ahmed Darwish Mahmoud

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Assist. Prof. Dr. Hatem Adel Said Sabry

Assistant Professor of Neurosurgery Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University

2015

Acknowledgement

I would like to express my deep gratitude and appreciation to my dear professor, Prof. Dr. Ashraf Gamal El Din Al Abyad, Professor of Neurosurgery, Ain Shams University, for his kind guidance and support throughout this work, and also throughout my residency and training program.

I would like to extend my deepest thanks to Assist. Prof. Dr Ahmed Darwish Mahmoud, Assistant Professor of Neurosurgery, Ain Shams University, for his great support and continous encouragement.

I would like to express my sincere gratitude for Assist. Prof. Dr. Hatem Adel Said Sabry, Assistant Professor of Neurosurgery, Ain Shams University, for his tremendous assistance, close supervision, and his continous experienced advice.

I would like to express my deep gratitude to our dear professor, Prof. Dr. Alaa Fakhr, Professor and Chairman of department of Neurosurgery, Ain Shams University, for introduction the systematic review for the first time, and gives us the chance to be up to dated with the latest methods of scientific research.

I would like to express my deep gratitude to Prof. Dr Mouhamed El Sayed Ismael, Professor of Neurosurgery, Ain Shams University, and all staff members of the fourth unit, for their continous support and wise guidance for me through my training program

I would like to express my deepest thanks and gratitude to Dr. Asem Mounir Abd El Latif, Assitant lecturer of Neurosurgery, Ain Shams University, and Dr Ignatius Esene Negene, Neurosurgery fellow at Ain Shams University, for their great help, continous support and close supervision step by step while preparing the systematic review.

I would like also to express my gratitude to my brother and colleague Eslam Mohsen Mahmoud, resident of Neurosurgery, Ain Shams University, for his continous support step by step throughout our residency and while preparing our reviews. I would like also to express my warm gratitude to my mother, father and sister for their continous support and encouragement throughout my whole life.

Last but not least, I would like to thank all my colleagues, residents of Neurosurgery, Ain Shams University for their continous help and encouragement.

Table of contents

List of figures	V
List of tables	VII
List of abbreviations	IX
Introduction	1
Rationale and justification of the study	1
Goal of the study	2
Objectives	2
Review of literature	3
Anatomy	3
Spine biomechanics	8
Pathophysiology of recurrent disc herniation	17
Patient evaluation	22
Clinical picture	22
Preoperative investigations	27
Management of recurrent lumbar disc herniation	29
Repeat discectomy without fusion	31
Repeat discectomy associated with posterolateral fusion and transpedicula screw fixation	
Lumbar interbody fusion	34
Types of grafts used in interbody fusion:	35
Posterior lumbar interbody fusion	37
Transforaminal lumbar interbody fusion	42
Anterior lumbar interbody fusion	49
Postoperative stage	
Postoperative care	55
Postoperative investigations	56
Methodology:	57
Search strategy	

Data collection	60
Data analysis	61
Results	62
Study characters	62
Characters of the recurrent herniated lumbar disc	67
Preoperative symptoms, signs and investigations	70
Comparison of Preoperative and postoperative clinical data	73
Assessment of clinical outcome and patient satisfaction	79
Postoperative investigations and fusion rate	84
Secondary outcomes	86
Discussion	96
Conclusion	107
Reference List	108
Arabic summary	121

List of figures

Figure 1: Lateral and posterior view of lumbar spine	4
Figure 2: Coronal section in intervertebral disc	5
Figure 3: Detailed structure of the annulus fibrosus	6
Figure 4: Attachment of the posterior longtudinal ligament	7
Figure 5: Exit of nerve roots through the neural foreman	7
Figure 6: Diagramatic representation of spine motion segment	8
Figure 7: Diagramatic representation of the orientation of trabeculae in vertebra	al
body	. 10
Figure 8: Digramatic representation of the shear, torsion and lengthening forces	on
the intervertebral disc	. 11
Figure 9: Diagramatic representation of types of disc prolapsed	. 18
Figure 10: Site of disc herniation	. 18
Figure 11: Gadolinium enhanced MRI showing difference between recurrent disc	2
(left) and epidural fibrosis (right)	. 27
Figure 12: Diagramatic representation showing difference between angulation a	nd
translaltion between flexion and extension	. 28
Figure 13: Posterior and lateral view of posterolateral fusion	.34
Figure 14: Cylinderical cages, used early, screwed through the end plate	.36
Figure 15: Ring shaped titanium cages	. 36
Figure 16: Last generation of cages which are box shaped and better butress the	
endplate	.36
Figure 17: Digramatic representation of steps of PLIF.	. 38
Figure 18: Postoperative plain radiograph after insertion of PLIF	40
Figure 19: Diagramatic representation of steps of TLIF	. 43
Figure 20 postoperative radiographs after insertion on TLIF	. 47
Figure 21: Diagramatic representation of steps of ALIF	51
Figure 22: Postoperative radiographs following insertion of ALIF	.54
Figure 23: Chart illustrating comparison between surgical procedures by total JC)A
score	. 77
Figure 24: Chart illustrating comparison between surgical procedures by LBP JOA	4
score	. 77
Figure 25: Chart illustrating comparison between surgical procedures by VAS	78
Figure 26: Chart illustrating comparison between surgical procedures by ODI	. 79
Figure 27: Chart illustrating comparison between clinical outcomes by JOA score	
recovery rate	. 83

List of tables

Table 1 Characteristics of studies reporting repeat discectomy alone	63
Table 2 Characteristics of studies reporting discectomy associated with fusion	64
Table 3 Characteristics of studies comparing discectomy alone versus discectomy	,
and fusion	65
Table 4 Characters of patients who underwent repeat discectomy alone	65
Table 5 Characters of patients who underwent repeat discectomy and fusion	66
Table 6 Number and level of recurrences in patients who underwent repeat	
discectomy alone	67
Table 7 Number and level of recurrences in patients who underwent repeat	
discectomy and fusion	68
Table 8 Site of recurrence in patients who underwent repeat discectomy alone (
Table 9 Site of recurrence in patients who underwent repeat discectomy and	
fusion	69
Table 10 Preoperative signs and symptoms in patients who underwent repeat	
discectomy alone	70
Table 11 Preoperative symptoms and signs in patients who underwent repeat	
discectomy and fusion	71
Table 12 Preoperative investigations in patients who underwent repeat discecton	
alone	-
Table 13 Preoperative investigations in patients who underwent repeat discecton	
and fusion	-
Table 14 Comparison of preoperative and postoperative clinical data scores in	-
patients who underwent repeat discectomy alone	73
Table 15 Comparison of preoperative and postoperative clinical data scores in	, ,
patients who underwent discectomy and fusion	75
Table 16 Comparison between studies that use JOA score	
Table 17 Comparison between studies that use VAS	
Table 18 Comparison between studies that use ODI	
Table 19 Outcome assessment in patients who underwent repeat discectomy	, ,
alone	ደበ
Table 20 Outcome assessment in patients who underwent discectomy and fusion	
Table 20 Outcome assessment in patients who underwent discectority and rusion	
Table 21 Comparison of outcome between studies that use JOA score recovery	OΙ
rate and satisfaction rate	ดว
Table 22 Comparison of outcome between studies that use VAS improvment rate	
Table 22 Companison of outcome between studies that use VAS improvment rate	
	04

Table 23 Postoperative investigations in patients who underwent repeat	
discectomy alone	. 84
Table 24 Postoperative investigations and fusion rate in patients who underwen	t
repeat discectomy and fusion	. 85
Table 25 Blood loss, operation length, hospital stay in patients who underwent	
repeat discectomy alone	. 86
Table 26 Blood loss, operation length, hospital stay in patients who underwent	
discectomy and fusion	. 87
Table 27 Dural tear in patients who underwent repeat discectomy alone	. 89
Table 28: Dural tear in patients who underwent discectomy and fusion	. 90
Table 29 Postoperative rerecurrence and instability in patients who underwent	
repeat discectomy alone	. 92
Table 30 Neurological deficit and wound infection in patients who underwent	
repeat discectomy alone	. 93
Table 31 Neurological deficit and wound infection in patients who underwent	
repeat discectomy and fusion	. 95

List of abbreviations

LSS	Lumbosacral spine
PLL	Posterior longitudinal ligament
ALL	Anterior longitudinal ligament
IVD	Intervertebral disc
IAR	Instantaneous axis of rotation
TLIF	Transforaminal lumbar interbody fusion
PLIF	Posterior lumbar interbody fusion
ALIF	Anterior lumbar interbody fusion
PLF	Posterolateral fusion
MRI	Magnetic resonance imaging
PXR	Plain x ray
АР	Anteroposterior
JOA	Japanese orthopedic association
VAS	Visual analogue scale
ODI	Oswestry disability index

Introduction

Rationale and justification of the study

Lumbar discectomy for sciatica is one of the most common back surgeries,(1) despite significant improvement in surgical technique and technology,complications do occur,(2) such as recurrence of back and/or radicular pain. Possible causes of recurrent pain include recurrent lumbar disc herniation, new disc herniation, epidural fibrosis, scarring, degenerative lumbar disease, segmental instability, and infection.(3)

Recurrent lumbar disc herniation occurs in approximately 5% to 15% of patients and contributes significantly to poor clinical outcomes.(4-6)

By definition, patients with recurrent lumbar disc herniation have a pain-free period of 6 months after the index surgery before recurrence of symptoms.(4) However, in the clinical setting, no strict time interval is required to elapse before a diagnosis of recurrent disc herniation can be made.(3)

Many modalities have been used to evaluate the lumbar spine after surgery. The current neuroimaging tool of choice is gadolinium enhanced magnetic resonance imaging to investigate postdiscecetomy recurrent symptoms.(7)

The optimal surgical technique for treating recurrent lumbar disc herniation is controversial.(8) Some authors believe that in absence of objective evidence of spinal instability, recurrent lumbar disc herniation may be adequately treated by repeated discectomy alone.(6;9-11)while others believe that repeated discectomy alone without fusion remains the major source of complications.(12;13)

Fusion with repeated discectomy can be broadly categorized as posterolateral fusion (PLF) and interbody fusion. Various techniques for interbody fusion have been described in the literature, including anterior lumbar interbody fusion(ALIF), posterior lumbar interbody fusion (PLIF) and transforaminal lumbar interbody fusion (TLIF).(14)

Introduction

Through a wide systematic review, we intend to evaluate the results of more than 30 years experience in treating recurrent herniated lumbar disc with different surgical techniques, assessing short term outcome as improvement of low back pain and radicular pain, and long term outcomes as appearance of spinal instability and complications of different surgical techniques.

Faced with this therapeutic dilemma of "disectomy" versus "discectomy and fusion" for recurrent herniated lumbar disc, we think an upto-date reviewing and pooling of available data will summarize the current state of knowledge on the management of recurrent herniated lumbar disc. This will provide strong evidence that will help redefine the role of the fusion associated with discectomy alone amongst other surgical techniques for management of recurrent herniated lumbar disc.

Goal of the study

To review and summarize available knowledge on the role of discectomy and fusion techniques versus discectomy alone in management of recurrent herniated lumbar disc.

Objectives

To review, revise and redefine the role of discectomy with different fusion techniques in improving low back pain and radiculopathy in comparison to discectomy alone in patients with recurrent herniated lumbar disc, and its role in prevention of further recurrence of the lumbar disc and the development of spinal instability.

Review of literature

Anatomy

> The lumbar vertebrae

The lumbar vertebrae are the lowest five vertebrae of the presacral column. All their features are expressed in more massive proportions. They are easily distinguished from other regional elements by their lack of a transverse foramen or costal articular facets.(15)

The body is large, having a width greater than its antero-posterior diameter, and is slightly thicker anteriorly than posteriorly. All structures associated with the vertebral arch are blunt and stout. The thick pedicles are widely placed on the dorso-latero-superior aspects of the body, and with their laminae they enclose a triangular vertebral foramen. Although the inferior vertebral notch is deeper than the superior, both make substantial contributions to the intervertebral foramen.(15)

The transverse processes are flat and wing like in the upper three lumbar segments, but in the fifth segment they are thick, rounded stumps. The fourth transverse process is usually the smallest.(15)

Aside from their relative size, the lumbar vertebrae can be recognized by their articular processes. The superior pair arise in the usual manner from the junction of the pedicles and laminae, but their articular facets are concave and directed dorsomedially, so that they almost face each other. The inferior processes are extensions of the laminae that direct the articulating surfaces ventrolaterally and lock themselves between the superior facets of the next inferior vertebrae. This arrangement restricts rotation and translation in the lumbar region.(15)

The lumbar segments also have pronounced mammillary processes, which are points of origin and insertion of the thick lower divisions of the deep paraspinal muscles.(15)

Review of literature

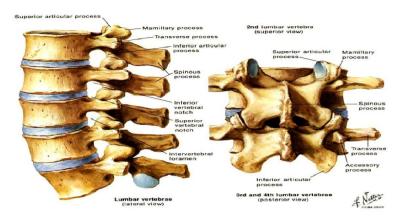


Figure 1: Lateral and posterior view of lumbar spine. (Netter atlas of human anatomy(16))

> The intervertebral disc

The intervertebral disc is composed of three main structures: the cartilaginous endplates, the central nucleus pulposus, and the peripherally located annulus fibrosus, their relation to each other is shown in figure 2.(17)

Cartilaginous endplates

The intervertebral disc is separated from adjacent vertebral bodies by a cartilaginous endplate superiorly and inferiorly. In humans, the endplate serves as the growth plate for the vertebral bodies, having the typical structure of an epiphyseal growth plate.(18)

The endplates consists of 1-mm-thick, avascular layer of hyaline cartilage in adults. Most compressive forces are transmitted through the superior vertebral body to the endplate, to the nucleus pulposus, and to the inferior endplate and vertebral body. (19)

Nucleus pulposus

The nucleus lies between adjacent endplates and forms the gel-like core of the disc. It consists of a proteoglycan and water matrix, held together by an irregular network of collagen type II and elastin fibers. Proteoglycans have numerous highly anionic glycosaminoglycan (GAG) side chains, which