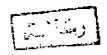
Carbon Dioxide and Cerebral Circulation

Essay Submitted for Partial Fulfillment of Master Degree in Anesthesiology

BY

Ayman Ahmed Abd El-Latif

M.B.B.Ch., Faculty of Medicine, Ain Shams University


566 ul

617-96

Supervised By

A. AProf. Dr. Ibrahim Abd El-Ghani Ramadan

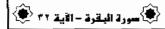
Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Assistant Prof. Dr. Seham Hussein Mohammed

Assistant Professor of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University

Dr. Amr Essam El-Din El-Hennamy

Lecturer of Anesthesia and Intensive Care Faculty of Medicine - Ain Shams University


Faculty of Medicine
Ain Shams University
*** 1999 ***

السالح المنا

قالوا سبحانك لا علم لنا إلا ما علمتنا إنك أنت العليم الحكيم

صدق الله العظيم

70 My Family

(

Aeknowledgment

First, thanks are all due to **God** for blessing this work until it has reached its end, as a part of his generous help throughout my life.

I would like to express my deepest gratitude to **Prof. Dr. Ibrahim Abd El-Ghani Ramadan**, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his great support and continuous encouragement throughout this whole work. It is a great honor to work under his guidance and supervision.

I am truly grateful to **Ass. Prof. Dr. Seham Hussein Mehammed**, Assistant Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for her close supervision, sincere help, valuable suggestions and continuous encouragement throughout the whole work.

My deepest appreciation and grateful thanks are due to **Dr. Amr Essam El-Din El-Hennamy**, Lecturer of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University, for his kind advice and his great efforts throughout this work.

Ayman Abd El-Latif

List of Contents

Introduction	1	
Chapter (1): Overview of the Anatomy and Physiology		
 Cerebral blood supply 		
Cerebral metabolism		
Cerebral blood flow		
Chapter (2): CO2 and Its Impact on Cerebral Circulation	18 - 51	
 Physiology 		
 Mechanisms of CO₂-induced alteration of cerebral vascular tone 		
 Effect of CO₂ on cerebral vascular regulation 		
 Effect of anesthetics on the CO₂ response of cerebral circulation 		
 The potential interactions of CO₂ and other processes that regulate CBF 		
• CO ₂ monitoring		
Chapter (3): Monitoring of CBF	52 - 60	
Chapter (4): PaCO2 Manipulation in Patient Care		
 CO₂ in the management of cerebral ischemia 		
Hyperventilation and ICP		
 Hyperventilation and subarachnoid hemorrhage 		
Intraoperative hyperventilation		
Summary	71 - 73	
References	74 - 86	
Arabic Summary		

List of Tables


No.	Table	Page
Table (1):	"Normal" human values.	7
Table (2):	Summary of CO2 and cerebral physiology.	42

List of Figures

No.	Figure	Page	
Figure (1):	The cerebral circulation.		
Figure (2):	Circle of Willis with collateral pathways.	4	
Figure (3):	Changes in CBF caused by independent alterations in PaCO ₂ , PaO ₂ , blood pressure.	9	
Figure (4):	Idealized depiction of pressure autoregulation.	11	
Figure (5):	Autoregulatory failure.	12	
Figure (6):	Interaction of degree and duration of flow reduction on neurologic function.	13	
Figure (7):	Altering the PaCO ₂ changes the extracellular pH: the initial step leading to changes in (VSM) intracellular calcium concentration and vascular tone.	34	
Figure (8):	The effect of prolonged hyperventilation on brain extracellular pH.	37	
Figure (9):	Phases of a single breath gas washout.		
Figure (10):	Capnographic waveform in a variety of conditions.	47	

Introduction

