

STUDY THE EFFECT OF THE DIFFERENT TYPES OF SOLID FUELS ON THE SINTERING PROCESS PERFORMANCE

By

Ahmed Abdel Azim El-Sayed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In

Mining Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

STUDY THE EFFECT OF THE DEFFERENT TYPES OF SOLID FUELS ON THE SINTERING PROCESS PERFORMANCE

By Ahmed Abdel Azim El-Sayed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
Mining Engineering

Under the Supervision of

Prof.Dr. Ahmed Abdel Aziz Ahmed

Assoc.Prof. Ayman A. El-Midany

Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University Mining, Petroleum, and Metallurgical Department Faculty of Engineering, Cairo University

Prof.Dr.Mohamed El-Menshawi Hussein Shalabi

central metallurgical research and development institute (CMRDI)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

STUDY THE EFFECT OF THE DEFFERENT TYPES OF SOLID FUELS ON THE SINTERING PROCESS PERFORMANCE

By Ahmed Abdel Azim El-Sayed Ibrahim

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in

Mining Engineering

Approved by the

Examining Committee:

Prof.Dr.Ahmed Abdel Aziz Ahmed , Thesis Main Advisor

Prof.Dr.Mohamed El-Menshawi Hussein Shalabi , Supervisor

Central Metallurgical R&D Institute (CMRDI)

Prof.Dr.MagdiFouadAbadir , Internal Examiner

Faculty of Engineering, Cairo University

Prof.Dr. Amin Mohamoud Baraka , External Examiner

Faculty of Science, Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT

Engineer: Ahmed Abdel Azim El-Sayed Ibrahim

Date of Birth:8 / 2 / 1988Nationality:Egyptian

E-mail:engineer.good@yahoo.com
Phone: 01015514055
Address: Helwan, Cairo
Registration Date: 1 / 10 / 2013
Awarding Date: / /2015

Degree: Master of Science

Department: Mining, Petroleum and Metallurgical Engineering

Supervisors: Prof.Dr.Ahmed Abdel Aziz Ahmed

Assoc.Prof. Ayman A. El-Midany

Prof.Dr.Mohamed El-Menshawi Hussein Shalabi

Examiners: Prof.Dr. Ahmed Abdel Aziz Ahmed

Prof.Dr.Mohamed El-Menshawi Hussein Shalabi

Central Metallurgical Research and Development Institute (CMRDI)

Prof.Dr.Amin Mohmoud Baraka Prof.Dr.Magdi Fouad Abadir

Title of Thesis:

STUDY THE EFFECT OF THE DEFFERENT TYPES OF SOLID FUELS ON THE SINTERING PROCESS PERFORMANCE

Key Words: iron ore, sintering process, coke breeze, charcoal, petroleum coke.

Summary:

Coke breeze is the main fuel used in the sintering process. Due to its limited production in Egypt as well as the change in the imported coke breeze price is going higher from one year to another, this thesis aims at finding other alternatives to replace coke breeze. To achieve this goal, the sintering process factors such as the amount of coke breeze, water content and ignition time were optimized before testing the fuel alternatives. The used fuel alternatives are anthracite, petroleum coke, coal and charcoal. Similar results of optimum conditions using coke breeze alone were achieved by its replacement by 45 % of anthracite or petroleum coke and 30% of coal or charcoal.

Acknowledgment

I would like to express my deep regards and sincere gratitude to Prof. Ahmed Abdel Aziz Ahmed, Faculty of Engineering, Cairo University for his care, kind supervision, encouragement, constant efforts, and valuable stimulating guidance and fruitful discussion throughout this study.

I offer my profuse thanks with humble reverence to Prof. Mohamed El-Menshawi Hessain

Shalabi, Central Metallurgical Research and Development Institute (CMRDI), for his invaluable guidance and support. He was a beacon light, whose constant efforts and encouragement proved to be a parallel stimulus in completing this research successfully.

I would like to thank Dr. Ayman Abdel Hamed El-Midany, Faculty of Engineering, Cairo University for for his patience, motivation, and immense knowledge. His guidance helped

I am grateful to my supervisor Prof. Dr. Naglaa Ahmed El-Hussiny, Central Metallurgical Research and Development Institute (CMRDI), for her support and co-operation in the hours of need and for her expert.

me in all the time of research and writing of this thesis. I could not have imagined having a

better advisor and mentor for my master study.

Table of Contents

AcknowledgmentI
Table of contentsII
List of tablesVIII
List of figuresIX
AbstractXIV
Chapter 1: Introduction1
Chapter 2: Literature Review3
2.1 Introduction
2.2 Sintering of iron ore
2.3 History of sintering process and its advantage 5
2.4 Factors affecting the quality and rate of sintering process 6
2.4.1 Effect of the Amount of Water Added to the sintering charge 6

	2.4.2 Effect of Sinter Return added to the sintering charge	7
	2.4.3 Effect of Feed Size	7
	2.4.3.1 Effect of Coke Breeze Size	7
	2.4.3.2 Effect of Iron Ore Grain Size	8
	2.4.3.3 Effect of Limestone Particle Size	9
	2.4.4 Effect of the amount of coke on the sintering process	9
	2.4.5 Effect of Ignition Time	10
2.5	Use of other types of fuels	11
	2.5.1 Anthracite	11
	2.5.2 Petroleum coke	12
	2.5.3 Charcoal	13
Chap	2.5.3 Charcoalter 3: Experimental Work	
_		15
_	ter 3: Experimental Work	15 15
_	Raw Materials 3.1.1 Iron ore	15 15
_	Raw Materials 3.1.1 Iron ore	15 15 15
_	Raw Materials 3.1.1 Iron ore 3.1.2 Limestone	15 15 15 15
_	Raw Materials 3.1.1 Iron ore 3.1.2 Limestone 3.1.3 Coke breeze.	15 15 15 15
3.1	Raw Materials 3.1.1 Iron ore 3.1.2 Limestone 3.1.3 Coke breeze 3.1.4 Sinter return	15 15 15 15 15
3.1	Raw Materials 3.1.1 Iron ore 3.1.2 Limestone 3.1.3 Coke breeze 3.1.4 Sinter return 3.1.5 Fuels	15 15 15 15 16

3.3 Sintering Apparatus and Sintering procedure	16
3.3.1 Strength of sinter by shatter test	17
3.3.2 Productivity of the sintering machine	17
3.3.3 Productivity of the sintering machine at blast furnace Yard	18
3.3.4 Reducibility of product sinter by hydrogen	19
3.3.5 Reflected Light Microscopy	20
Chapter 4: Results and Discussion	21
4.1 Characterization of Individual Raw Materials of Sintering Iron Ore	21
4.1.1 Chemical compsitons of the sintering raw material	21
4.1.1.1 The chemical compositions of iron ore and limestone	21
4.1.1.2 The chemical composition of used fuels	22
4.1.2 The mineralogical examination of raw material	22
4.1.2.1 The mineralogical examination of Iron ore	22
4.1.2.2 The mineralogical examination of used fuels	23
4.1.3 Sieve analysis of raw materials	26
4.2 Factors Affecting on the Technical Properties of the Produced Sinter	26
4.3.1 Effect of the amount of coke breeze	26
4.3.2 Effect of the amount of added water	30
4 3 3 Effect of ignition time	33

4.3.4 Characterization of the produced sinter at 6 % coke breeze used 35	
4.3 Alternative Fuels for Iron Ore Sintering	
4.3.1 Effect of Replacement of Coke Breeze by Anthracite on the Sintering Process	
4.3.1.1 Effect of replacement of coke breeze by anthracite on vertical velocity 39	
4.3.1.2 Effect of replacement of coke breeze by anthracite on the amount of ready made sinter and its strength	
4.3.1.3 Effect of replacement of coke breeze by anthracite on the productivity of sintering machine and the productivity at blast furnace yard	
4.3.1.4 The Characterization of produced sinter at 45 % of coke breeze replaced by anthracite	
4.3.1.4.1 X-ray analysis of the produced sinter	
4.3.1.4.2 The microscopic structure of the produced sinter	
4.3.1.4.3 Chemical analysis of the produced sinter	
4.3.1.4.4 Reducibility the produced sinter	
4.3.2 Effect of Replacement of Coke Breeze by Petroleum Coke on the Sintering Process	
4.3.2.1 Effect of replacement of coke breeze by petroleum coke on vertical velocity	
4.3.2.2 Effect of replacement of coke breeze by petroleum coke on ready made sinter and its strength	
4.3.2.3 Effect of replacement of coke breeze by petroleum coke on the productivity of sintering machine and the productivity at blast furnace yard46	
4.3.2.4 Characterization of produced sinter at 45% petroleum coke	

4.3.2.4.1 X-ray analysis of the produced sinter	8
4.3.2.4.2 The microscopic structure of the produced sinter	8
4.3.2.4.3 Chemical analysis of the produced sinter	9
4.3.2.4.4 Reducibility of the produced sinter	.9
B Effect of Replacement of Coke Breeze by Coal on the Sintering tess	1
4.3.3.1 Effect of replacement of coke breeze by coal on vertical velocity on the sintering machine	1
4.3.3.2 Effect of replacement of coke breeze by coal on the amount of readymade sinter and its strength	1
4.3.3.3 Effect of replacement of coke breeze by coal on the productivity of sintering machine and the productivity at blast furnace yard	2
4.3.3.4 Characterization of produced sinter at 30%coal	4
4.4.3.4.1 X-ray analysis of the produced sinter	4
4.4.3.4.2 The microscopic structure of the produced sinter	4
4.4.3.4.3 Chemical analysis of the produced sinter	4
4.4.3.4.4 Reducibility of the produced sinter5	4
4 Effect of Replacement of Coke Breeze by Charcoal on the Sintering sess	7
4.3.4.1 Effect of replacement of coke breeze by charcoal on vertical velocity on the sintering machine	7
4.3.4.2 Effect of replacement of coke breeze by charcoal on the amount of readymade sinter and its strength	7
4.3.4.3 Effect of replacement of coke breeze by charcoal on the productivity of sintering machine and the productivity at blast furnace yard	8
4.3.4.4 Characterization of optimum produced sinter at 30 coke breeze replaced by charcoal	0

Chapter 6: References		
Chapter 5:	Conclusion	6 4
	4.3.4.4 Reducibility of the produced sinter	60
	4.3.4.4.3 Chemical analysis of produced sinter	60
	4.3.4.4.2 The microscopic structure of produced sinter	60
	4.34.4.1 X-ray analysis of produced sinter	60

List of Tables

Table 2.1: Production evolution of pig iron 2009 to 2014	3
Table 2.2: Coke particle size as mentioned in previous studies	8
Table 4.1: Chemical compostions of the iron ore and limestone	21
Table 4.2: Chemical compostions of fuels	22
Table 4.3: Size distribution of used materials and fuels	28
Table 4.4: Chemical compostions of produced sinter at 6 % coke breeze	35
Table 4.5: Chemical compostions of produced sinter at 45 % anthracite	44
Table 4.6: Chemical compostions of produced sinter at 45 % petroleum coke	49
Table 4.7: Chemical compostions of produced sinter at 30 % Coal	55
Table 4.8: Chemical compostions of produced sinter at 45 % Charcoal	61

List of Figures

Figure 2.1: Sintering machine	4
Figure 2.2: Reduction zones in sintering bed	5
Figure 3.1: Laboratory sintering machine	18
Figure 3.2: Shatter Test Device	19
Figure 3.3: Schematic diagram of thermo-balance apparatus	20
Figure 4.1: X-Ray diffraction of original ore sample	23
Figure 4.2: X-Ray diffraction pattern of coke breeze sample	24
Figure 4.3: X-Ray diffraction pattern of anthracite sample	24
Figure 4.4: X-Ray diffraction pattern of petroleum coke sample	25
Figure 4.5: X-Ray diffraction pattern of coal sample	25
Figure 4.6: X-Ray diffraction pattern of charcoal sample	26
Figure 4.7: Effect of amount of coke breeze addition on vertical velo	ocity of
sintering machine	27
Figure 4.8: Effect of amount of coke breeze addition on the strength	of
produced sinter and the amount of ready made sinter	29
Figure 4.9: Effect of amount of coke breeze addition on the producti	vity of
sintering machine and productivity at blast furnace yard	29

Figure 4.10:	Effect of amount of water added on vertical velocity machine
	31
Figure 4.11:	Effect of amount of water added on the strength of produced
	sinter and the amount of ready made sinter32
Figure 4.12:	Effect of amount of water added on the productivity of sintering
	machine and productivity at blast furnace yard32
Figure 4.13:	Effect of ignition time on vertical velocity of sintering machine
	33
Figure 4.14:	Effect of ignition time on the strength of produced sinter and the
	amount of ready made sinter34
Figure 4.15:	Effect of ignition time on the productivity of sintering machine
	and productivity at blast furnace yard34
Figure 4.16:	X-Ray diffraction pattern of the optimum produced sinter37
Figure 4.17 :	The microscopic structure of optimum iron ore sinter used 6%
	coke breeze
Figure 4.18:	Effect of reducibility on the optimum of produced sinter38
Figure 4.19:	Effect of the proportion of anthracite replacing coke breeze on
	the vertical velocity on the sintering process40
Figure 4.20:	Effect of the proportion of anthracite replacing coke breeze on
	the strength and the amount of ready madesinter

Figure 4.21:	Effect of the proportion of anthracite replacing coke breeze on
	the productivity of sintering machine and the productivity of
	blast furnace yard
Figure 4.22:	X-Ray diffraction pattern of produced sinter43
Figure 4.23:	The microscopic structure of produced sinter at 45% coke
	breeze replaced by anthracite43
Figure 4.24:	Effect of Hydrogen flow rate on the reduction percentage of
	produced sinter at 100% coke breeze and 45% anthracite45
Figure 4.25:	Effect of the proportion of petroleum coke replacing coke
	breeze on the vertical velocity on the sintering machine47
Figure 4.26:	Effect of the proportion of petroleum coke replacing coke
	breeze on the strength and the amount of ready made sinter47
Figure 4.27:	Effect of the proportion of petroleum coke replacing coke
	breeze on the productivity of the sintering machine and the
	productivity at blast furnace yard48
Figure 4.28:	X-Ray diffraction pattern of the produced sinter (Used 55%
	coke breeze + 45% petroleum coke)50
Figure 4.29:	The microscopic structure of produced sinter at 45% coke breeze
	replaced by petroleum coke50