

BIOLOGICAL STUDIES ON THE REPRODUCTION OF MULLET (Mugil cephalus L.) IN EGYPT

A THESIS SUBMITTED

RY

MOSTAFA ABD EL-WAHHAB EL-BAYOMY MOUSA

ASSISTANT LECTURER OF FISH BIOLOGY NATIONAL INSTITUTE OF OCEANOGRAPHY AND FISHERIES

TO

THE FACULTY OF SCIENCE AIN SHAMS UNIVERSITY

FOR

THE AWARD OF THE Ph. D. Degree IN **ZOOLOGY - FISH BIOLOGY**

SUPERVISED

BY

Dr. MAHMOUD A. EL-BANHAWY

Dr. MAGDA I. ZAKI

PROF. OF EXPERIMENTAL ZOOLOGY

PROF. OF FISH REPRODUCTION

(Cell Biology and Histochemistry)

AND HEAD OF AQUACULTURE DIVISION

FACULTY OF SCIENCE AIN SHAMS UNIVERSITY NATIONAL INSTITUTE OF OCEANOGRAPHY AND FISHERIES

Dr. SAID A. KAMEL

ASSOCIATE PROF. OF FISH REPRODUCTION NATIONAL INSTITUTE OF OCEANOGRAPHY AND FISHERIES

1994

﴿ وجعلنا مِن الماء كل شيء حي ﴾

To: My Parents

To: My Family

ACKNOWLEDGMENT

Firstly, I would like to offer my humble thanks to my GOD who has granted me the ability to accomplish this work.

It also gives me great pleasure to express my sincere gratitude and appreciation to Prof.Dr.Mahmoud A.El-Banhawy, Professor of Experimental Zoology (Cell Biology and Histochemistry), Department of Zoology, Faculty of Science, Ain Shams University, for his continuous supervision, fruitful guidance, constructive criticism and critical reading of the manuscript.

Particular appreciation is also due to Prof. Dr.Magda I. Zaki, Professor of Fish Reproduction and Head of Aquaculture Division, National Institute of Oceanography and Fisheries, for planning this research, keen supervision and for the facilities she has kindly supplied to me.

My cordial thanks also go to Dr. Said A.Kamel, Associate Professor of Fish Reproduction, National Institute of Oceanography and Fisheries, for his constructive share in supervision, his continuous encouragement and valuable advice during the study.

Thanks are also due to my colleagues in the Laboratory of Fish Reproduction for their undeniable role in this work.

The assistance, support and encouragement offered to me from the Department of Zoology, Faculty of Science, Ain Shams University are highly acknowledged.

Last and not least, I feel much grateful to my family for the continuous help and faithful encouragement extended to me during the progress of this work.

CONTENTS

	Page
LIST OF TABLES	i
LIST OF FIGURES	ii
CHAPTER :I	
INTRODUCTION	1
AIM OF THE WORK	4
REVIEW OF LITERATURE	5
.Identification of fishes by muscle protein electrophoresis .	5
.Histological structure and seasonal changes of the gonads	6
and pituitary gland .	
.Gonadotropin (s) and sex steroids during both reproductive	12
cycle and induction of oocyte growth and maturation.	
CHAPTER :II	
MATERIAL AND METHOD	16
.Environmental Factors	16
.Fish Collection .	18
.Boold Sampling .	18
.Experimental Design	19
- Experiment I:Effects of exogenous hormone treatment on	19
oocyte growth.	
- Experiment II: Effects of exogenous hormone treatment on	20
oocyte maturation and changeover	
M.cephalus female to the spawning condition.	
PhastSystem Isoelectric focusing (IEF) Method .	23
Preparation of extracts for isoelectric focusing.	23
Sliver staining technique.	24
Sample application and isoelelctric fousing (IEF)	24
Isoelectric point measurement.	24
Histological and Histochemical Preparations .	25
Quantitative Measurements	27

	Page
Radioimmunoassay (RIA)	27
- Gonadotropin (GTH) Radioimmunossay.	27
- Steroid Radioimmunossay.	28
Statistical Analysis	28
CHAPTER :III	
RESULTS AND OBSERVATIONS	29
I . Identification of Mugil cephalus by muscle protein	29
isoelectric focusing.	_,
II. Structure of the gonads and pituitary glands	33
The Gonads	33
The Testis	33
Morphology	33
Histology	33
The spermatogenic stages	36
Testicular cycle in saline water	41
Testicular cycle in fresh water	60
The ovary	64
Morphology	64
Histology	64
Oogesesis	66
Cytochemistry of oogensis	66
Oil droplets	66
Yolk globules	67
Cortical granules	73
Ovarian cycle	88
A) Ovarian cycle in saline water	88
B) Ovarian cycle in fresh water	101
Degeneration of the oocytes	103
Follicular atresia	103
The Pituitary Gland	106
Morphology	106
Histology	106

	Page
Cyclic changes in the pituitary gland	126
A) In male fish	128
B) In female fish	134
III.Cyclic changes in gonadosomatic index and serum levels of	145
gonadotropin and sex steroids.	
A) Males:	145
1- The gonadosomatic index (GSI).	145
2- Gonadotropin hormone (GTH).	146
3- Progesterone	149
4- Testosterone	152
5- Estradiol- 17 B	155
B) Females :	158
1- The gonadosomatic index (GSI).	158
2- Gonadotropin hormone (GTH).	159
3- Progesterone	162
4- Testosterone	165
5- Estradiol- 17 B	168
IV. Effects of exogenous hormone treatmant on growth and	172
maturation of the oocytes of M.cephalus in captivity.	
V. Effects of exogenous hormone treatment on gonadosomatic	182
index and serum levels of gonadotropin and sex steroids	
during inducing growth and maturation of oocytes of	
M.cephalus in captivity:	
1- The gonadosomatic index (GSI)	182
2- Gonadotropin hormone (GTH)	185
3- Progesterone	190
4- Testosterone	193
5- Estradiol- 17 B.	196
CHAPTER :IV	
DISCUSSION	200
.Identification of M.cephalus by muscle protien isoelectric	200
fousing	

	Page
.Structure of the gonads and pituitary glands .	201
.Cyclic changes in gonadotropin and sex steroids .	220
.Effects of exogenous hormone treatment on the levels of	231
gonadotropin hormone (GTH) and sex steroids during	
inducing growth and maturation of oocytes of M.cephalus	
in captivity .	
CHAPTER :V	
SUMMARY AND CONCLUSIONS	235
CHAPTER :VI	
REFERENECES	245
CHAPTER :VII	
ARABIC SUMMARY	

LIST OF TABLES

Гable No.	Page
1. The experimental design and the protocol of hormone injection	22
2. The isoelectric point (PI's) values and % of concentration of	32
scanning protein fractions of muscle.	
3. Gonadosomatic index of males M.cephalus.	50
4. Monthly variations in the frequency (%) of testicular stages.	61
5. Monthly variations in the frequency (%) of ovarian stages.	90
6. Gonadosomatic index of females M.cephalus.	92
7. Oocytes diameter of females M.cephalus.	94
8. Serum gonadotropin hormone levels of males.	147
9. Serum progesterone hormone levels of males.	150
10. Serum testosterone hormone levels of males.	153
11. Serum estradiol-17 hormone levels of males.	156
12. Serum gonadotropin hormone levels of females.	160
13. Serum progesterone hormone levels of females.	163
14. Serum testosterone hormone levels of females.	166
15. Serum estradiol-17B hormone levels of females.	169
16. Effect of human chrionic gonadotropin treatment on the	174
frequency of ovarian stages.	
17. Changes occurring in the ovary during the induction of	178 - 180
oocytes maturation.	102
18. Gonadosomatic index of hormones injected females.	183
19. Oocytes diameter of hormones injected females.	186
20. Serum gonadotropin hormone levels of injected females.	188
21. Serum progesterone hormone levels of injected females.	191
22. Serum testosterone hormone levels of injected females.	194
23. Serum estradiol-17B hormone levels of injected females.	197

LIST OF FIGURES

Figure No.	Page
1. Map showing the location of the Badawill lagoon and El-Serw	17
Fish Farm.	
2. Isoelectric focusing of muscle protein	30
3. The electrophoretograms and densitograms of muscle proteins	31
4. Section of the testis showing its shape.	34
5. Section of the testis showing its structure.	35
6. Section of the testis showing the spermatogenesis	37
7. Section of the testis showing the interstitial and Sertoli cells.	37
8. Section of the testis showing parachute shape of spermatozoa.	39
9. Section of the testis showing parachute shape of spermatozoa	40
and the interstitial cells.	
10. Testis section of immature male from saline water	42
11. Testis section of M. cephalus male during stimulating	43
spermatogenesis from saline water.	
12. Testis section of M. cephalus male during rapid	44
spermatogenesis from saline water.	
13. Section of ripe testis from saline water	45
14. Testis section of immature male from fresh water	46
15. Testis section of M. cephalus male during stimulating	47
spermatagenesis from fresh water.	
16. Testis section of M. cephalus male during rapid	48
spermatagenesis from fresh water.	
17. Section of ripe testis from fresh water.	49
18. Gonadosomatic index of male M. cephalus	51
19. Ovarian and testicular cycles of M. cephalus in relation to	52
annual fluctuation in day length (photoperiod) and water	
temperatures.	

Figure No.	Page
20. Section of immature testis	54
21. Testis section of M. cephalus during rapid spermatogenesis	56
22. Section of ripe testis	58
23. Section of spent testis	59
24. A magnified portion of the above section	59
25. Monthly variations in the frequency (%) of testicular stages.	62
26. Section of the ovary showing its shape.	65
27. Section showing the ovarian wall.	65
28. The distribution of general lipid in the vesicles oocyte and in	68
the primary yolk oocyte.	30
29. The distribution of general lipid in the secondary yolk oocyte.	68
30. The distribution of geneal lipid in the tertiary yolk oocyte.	69
31. Coalescence of oil droplets in the ripe oocyte.	69
32. The proteid yolk in the vesicles oocyte and primary yolk	70
oocyte.	70
33. The accumulation of proteid yolk globules in the secondary	70
yolk oocyte.	, 0
34. The accumulation of proteid yolk globules in the tertiary yolk	71
oocyte.	/1
35. The accumulation of proteid yolk globules in the ripe oocyte.	72
36. The proteolysis and homogenization of proteid yolk in the ripe	
oocyte.	12
37 The cortical alveoli of the primary yolk oocytes.	74
38. The cortical alveoli of the secondary yolk oocytes	74
30 The cortical always of the tartians 11	75 75
40. The cortical alyacli of the sine seed.	76
41 A magnified notion of the short and	76
42 Overv section of M. controlled during the median	78
previtellogenesis.	, 0

Figure No.	Page
43. Ovary section of M. cephalus during the period of early	80
vitellogenesis.	
44. The beginning of yolk deposition as yolk granules.	80
45. The proteid yolk of vesicles oocyte and the primary yolk	81
oocyte.	
46. The sudanophilic inner layer of oil droplets of the vesicles	81
oocyte.	
47. Ovary section of M. cephalus during the period of	82
mid-vitellogenesis.	
48. The distribution of oil droplets in the primary yolk oocytes.	84
49. The wall of the primary yolk oocyte.	84
50. Ovary section of M. cephalus during the period of	85
late-vitellogenesis.	
51. The wall of the secondary yolk oocyte.	85
52. Ovary section of M. cephalus during the prespawning period.	87
53. The wall of the tertiary yolk oocyte.	87
54. Section of ripe ovary.	89
55. The homogenized yolk in the ripe oocyte.	89
56. Monthly variations in the frequency (%) of ovarian stages.	91
57. Gonadosomatic index of female M. cephalus.	93
58.Oocytes diameter of females M. cephalus.	95
59. Section of the spent ovary.	100
60. Section of the ovary of M. cephalus from fresh water showing	102
the atretic oocytes.	
61. Ovary section of M. cephalus from fresh water at resorption	104
stage.	
62. Ovary section of M. cephalus from fresh water showing the	104
follicular atresia.	

Figure No.	Page
63. Ovary section of M. cephalus from fresh water at resorption	105
stage showing the degeneration of zona radiata.	
64. Ovary section of M. cephalus from fresh water at resorption	105
stage showing the phagocytosis of proteid yolk.	
65. Section of degenerating ovary showing the disturbance of	107
cortical alveoli arrangement.	
66. Section of degenerating ovary showing the move of oil	107
droplets out of the atretic oocyte.	
67. Section of degenerating ovary showing the invade of	108
phagocytic follicular cells for the yolky material.	
68. Midsagittal section of the pituitary gland of M. cephalus.	109
69. Section showing the prolactin cells of saline water fish.	110
70. Section showing the prolactin cells of fresh-water fish.	110
71. Section of the pituitary gland showing the orangeophilous	112
prolactin cells.	
72. Section of the pituitary gland showing the adrenocorticotropic	113
hormone cells, prolactin cells and thyrotrophs.	
73. A magnified portion of the above section.	113
74. Section of the pituitary gland showing the pbH ⁺	114
adrenocorticotropic hormone cells.	
75. Section of the pituitary gland showing the somatotrophs and	116
two types of gonadotrophs.	
76. Section of the pituitary gland stained with AB-PAS-OG.	116
77. Section of the pituitary gland stained with Heidenhain's Azan	118
78. Section of the pituitary gland stained with Mallory's stain.	118
79. Section of the pituitary gland stained with PAS-pbH-OG.	119
80. Section of the pituitary gland stained with aldehyde fuchsin.	119
81. Section of the pituitary gland showing two types of	120
gonadotrophs.	

Figure No.	Page
82. Section of the pituitary gland showing the thyrotrophs.	121
83. A magnified portion of the above section.	121
84. Section of the pituitary gland showing the thyrotrophs,	122
gonadotrophs and somatotrophs.	
85. A magnified portion of the above section.	122
86. Section of the pituitary gland showing the cell types in the pars intermedia.	124
87. Section of the pituitary gland showing the PAS ⁺ cells and pbH ⁺ cells in the pars intermedia.	124
88. Section of the pituitary gland stained with Heidenhain's Azan, showing the pars intermedia.	125
89. Section of the pituitary gland showing pituicytes and neurohypophyseal fibres in the pars intermedia.	127
90. Section of the pituitary gland showing the neurosecretory material.	127
91. Section of the pituitary gland of M. cephalus immature male.	129
92. Section of the pituitary gland of M. cephalus male obtained	131
during the period of stimulating spermatogenesis.	
93. Section of the pituitary gland of <i>M. cephalus</i> male obtained during the period of rapid spermatogenesis.	131
94. Section of the pituitary gland of ripe male.	133
95. A magnified portion of the above section.	133
96. Section of the pituitary gland of M. cephalus spent male.	135
97. A magnified portion of the above section.	135
98. Section of the pituitary gland of <i>M. cephalus</i> female obtained during the period of previtellogenesis.	137
99. Section of the pituitary gland of <i>M. cephalus</i> female obtained during the period of early-vitellogenesis.	137