STUDY OF INTERLEUKIN-2 RECEPTORS AND TUMOUR NECROSIS FACTOR SERUM LEVELS IN SCHISTOSOMIASIS AND THEIR ANALOGOUS CHANGES IN COLLAGEN DISEASES AND SCHISTOSOMAL ARTHROPATHY

Thesis

Submitted for Partial Fulfilment of M.D. In Basic Medical Science (Parasitology)

By

Heba El-Sayed Mohamed Abd El Aaty Assist. Lecturer of Parasitology Ain Shams Faculty of Medicine

Supervisors

Prof. Dr. Hamed M. Khalil
Prof. of Parasitology

Prof. Dr. Fally A. Tamara
Prof. of General Medicine and Head of Rheumatology Unit

Prof. Dr. Adel G. El Missiry
Prof. of Parasitology

Dr. Hoda M. Fahmy Assist. Prof. of Parasitology

Dr. Nadia M. Sabri Assist. Prof. of Parasitology

Faculty of Medicine Ain Shams University

1994

ACKNOWLEDGEMENT

First, I would like to thank Professor Dr. Tosson A. El-Morsy, Professor of Parasitology and Head of Parasitology Department, Faculty of Medicine, Ain Shams University, for his paternal emotions, providing me with the will to complete this work.

It is a great pleasure to express my sincere appreciation and deep gratitude to my Professor Dr. Hamed M. Khalil, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for dedicating part of his valuable time guiding me to put this study in its complete form. His great help, precious advice and continuous support has offered me a lot during this work.

I am also deeply indebted to Professor Dr. Fathy A. Tamara, Professor of General Medicine and Head of Rheumatology Department, Faculty of Medicine, Ain Shams University, for the generous help and cooperation, providing me with some of the materials to complete this study.

l

Special thanks go to Professor Dr. Adel G. El Missiry, Professor of Parasitology, Faculty of Medicine, Ain Shams University, for careful supervision throughout the work.

I am grateful to Dr. Hoda M. Fahmy, Assistant Professor of Parasitology, Faculty of Medicine, Ain Shams University, for her continuous guidance and encouragement.

I owe special gratitude to Dr. Nadia M. Sabri, Assistant Professor of Parasitology, Faculty of Medicine, Ain Shams University, for her honest assistance, devoting her time and effort to complete this work in its final form.

I truly appreciate Dr. Hanan G. El-Baz, Lecturer of Immunology, Theodor Bilharz Research Institute for her help in conducting part of the practical work of this thesis.

I also wish to offer many thanks to Dr. Nahla M. Zakaria, Lecturer of Clinical Pathology, Faculty of Medicine, Ain Shams University, for facilitating part of the practical work in this study.

Last, but not least, I thank all the staff members in Parasitology and Rheumatology Departments, Faculty of Medicine, Ain Shams Unversity, for their valuable help whenever needed.

1

ABBREVIATIONS

ADCC : Antibody dependent cell mediated cytotoxicity

BAF : B-cell activating factor

BCDF: B-cell differentiation factor

BCGF: B-cell growth factor

CAA : Circulating anodally migrating antigen

cAMP : Cyclic adenosine monophosphate

CCA : Circulating cathodally migrating antigen

CFU-e : Colony forming unit-erythroid

CFU-GM: Colony forming unit-granulocyte/macrophage

CSF : Colony stimulating factor

ECF-L: Eosinophil chemotactic factor for lymphocytes

ESP : Eosinophil stimulation promotor

GASP: Gut associated proteoglycon

IFN: Interferon

IL : Interleukin

LAP : Lymphocyte activating factor

LGL: Large granular lymphocytes

LPS : Lipopolysaccharides

LT : Lymphotoxin

MHC : Major histocompatibility complex

MSA : Major serological antigen

NK-cells: Natural killer cells

PEG: Polyethylene glycol

PHA: Phytohaemagglutinin

SDIF : Schistosome derived inhibitory factor

SEA : Soluble egg antigen

SWAP : Soluble adult worm antigenic preparation

T₃: Immature T-cells

T₄ : Helper/inducer T-cells

T₈ : Suppressor/cytotoxic T-cells

TCGF : T-cell growth factor

 TGF_{β} : Transforming growth factor-beta

TNF : Tumour necrosis factor

CONTENTS

	Page
INTRODUCTION	1
AIM OF THE WORK	3
REVIEW OF LITERATURE	4
- Host Immune Response Against Different	
Stages of Schistosome Parasite	4
- Cytokines	37
- Bilharzial Arthropathy	82
- Rheumatoid Arthritis	88
- Systemic Lupus Erythematosus (SLE)	96
- Enzyme Linked Immunosorbent Assay (ELISA)	105
- ELISA in Schistosomiasis	114
MATERIAL AND METHODS	117
RESULTS	171
DISCUSSION	238
SUMMARY	268
CONCLUSION	275
REFERENCES	277
ARABIC SUMMARY	

LIST OF TABLES

	Page
Table (1): Characteristic properties of cytokines	4 0
Table (2): Characteristic properties of human IL-2R	55
Table (3): Properties of IL-4 and IL-5	66
Table (4): Properties of IL-6	66
Table (5): Human hematopoietic growth factors	7 0
Table (6): Results of Group I	
a) Cases with early <u>S. mansoni</u> infection	173
Table (7): Results of Group I	
b) Cases presenting with schistosomal	
hepatosplenomegaly without ascites	174
Table (8): Results of Group I	
c) Cases presenting with schistosomal	
hepatosplenomegaly and ascites	175
Table (9): Results of Group II	
a) Cases with rheumatoid arthritis	176
Table (10): Results of Group II	
b) Cases with systemic lupus erythematosus	177
Table (11): Results of Group III	
Cases with schistosomal arthropathy	178
Table (12): Results of Group IV	
Normal control group	179
Table (13): Results of different tests in different groups	180
Table (14): Sex predilection in the different groups	182
Table (15): Age distribution among different groups	185

Table (16) :	Results of COPT in group I and III	187
Table (17) :	Results of ELISA for diagnosis of schistosomiasis	
	in group I and III	191
Table (18) :	COPT versus ELISA of schistosomiasis in	
	group I and III	195
Table (19) :	Frequency of joint affection in group IIa	
	(14 cases of rheumatoid arthritis)	202
Table (20) :	Frequency of joint affection in group IIb	
	(14 cases of SLE)	204
Table (21) :	Frequency of joint affection in group III	
	(14 cases of schistosomal arthropathy)	206
Table (22):	Frequency of small and big joints affection in	
	group II and III	208
Table (23):	ESR in mm/hour in different groups	212
Table (24) :	sIL-2R concentration (pg/ml) in different groups	215
Table (25) :	TNF-α concentration (pg/ml) in different groups	219
Table (26):	ESR, sIL-2R and TNF-α in different groups	223
Table (27) :	Correlation between variables in group Ia	226
Table (28) :	Correlation between variables in group Ib	227
Table (29) :	Correlation between variables in group Ic	228
Table (30):	Correlation between variables in group IIa	229
Table (31) :	Correlation between variables in group IIb	230
Table (32) :	Correlation between variables in group III	231
Table (33):	Correlation between variables in group IV	232

LIST OF FIGURES

		rage
Fig.	(1): A) Actions of IL-1 on hematopoietic and	
	lymphoid tissues	41
	B) Actions of IL-1 on non-lymphoid tissues	41
Fig.	(2): A) Actions of TNF- α and β on hematopoietic and	
	lymphoid tissues	48
	B) Actions of TNF- α and β on non-lymphoid tissues	48
Fig.	(3): Lymphocyte activation and role of interleukins	57
Fig.	(4): Predicta [™] soluble interleukin-2 receptor kit	156
Fig.	(5): Standard curve for detection of sIL-2R concentration	161
Fig.	(6): Kit for TNF-α	164
Fig.	(7): Standard curve for detection of TNF- α concentration	169
Fig.	(8): Sex predilection in group II and III	183
Fig.	(9): Sex predilection in group II and III	184
Fig.	(10): COPT of schistosomiasis in group I and III	188
Fig.	(11): COPT positive reaction showing globular blebs	189
Fig.	(12): COPT positive reaction showing long	
	segmented precipitates	189
Fig.	(13): Mean of optical density (OD) of ELISA for	
	schistosomiasis in group I and III	192
Fig.	(14): ELISA test of schistosomiasis in group I and III	193
Fig.	(15): ELISA test plate showing different colour intensities	194
Fig.	(16): COPT versus ELISA test of schistosomiasis	
	in group I and III	196
Fig.	(17): Homogenous pattern of ANA	198

Fig.	(18): Rim pattern of ANA	198
Fig.	(19): Speckled pattern of ANA	199
Fig.	(20): Frequency of joints affection in group IIa	203
Fig.	(21): Frequency of joints affection in group IIb	205
Fig.	(22): Frequency of joints affection in group III	207
Fig.	(23): Frequency of small and big joints affection	
	in group II and III	209
Fig.	(24): Frequency of small and big joints affection	
	in group II and III	210
Fig.	(25): Mean of erythrocytic sedimentation rate (ESR)	
	in mm/hour	213
Fig.	(26): Mean of sIL-2R concentration in different groups	216
Fig.	(27): sIL-2R microtitre plate showing different reactions	217
Fig.	(28): Mean of TNF-α concentration in different groups	220
Fig.	(29): TNF-α microtitre plate showing different reactions	221
Fig.	(30): Frequency of cases with elevated levels of ESR,	
	sIL-2R and TNF-α in different groups	224
Fig.	(31): Correlation between age and TNF-α in group Ib	233
Fig.	(32): Correlation between ESR and sIL-2R in group IIa	234
Fig.	(33): Correlation between titres of latex agglutination	
	and Rose Waaler tests in group IIa	235
Fig.	(34): Correlation between age and ESR in group III	236
Fig.	(35): Correlation between ESR and sIL-2R in group III	237

Introduction

INTRODUCTION

Schistosomiasis is one of the serious endemic parasitic infections in Egypt due to its major complications and its affection of a large category of Egyptians (Khalil et al., 1977).

Chronic infections (like schistosomiasis) and autoimmune conditions (like collagen diseases) are settings in which the body's immune system is more or less continuously bathed in antigenic stimuli. The antigenic sources can be invading organisms (in schistosomiasis), or altered and normal cross-reacting self components (in collagen diseases). The result of these long-term interactions between a person's immune system and antigens can be immunopathogenic, resulting in severe morbidity and mortality (George and Colley, 1992).

Human intestinal and hepatic schistosomaisis is associated with characteristic alterations of T-cell mediated immune responses (Feldmeier et al., 1985). Among the most critical features of the immune response is the secretion of the T-lymphocyte derived growth factor interleukin-2 (IL-2) and the expression of receptors for this lymphokine (Smith, 1989). Since soluble interleukin-2 receptors (sIL-2R) could be detected in vivo, and the preliminary observations of certain diseases associated increase in serum levels of this molecule, the applicability and relevance of

sIL-2R determination in a broad spectrum of disease conditions (Nelson et al. 1987).

Another aspect about immune system in human intestinal and hepatosplenic schistosomiasis is the role of macrophages and the macrophage mediator tumour necrosis factor-alpha (TNF- α) in granuloma formation which is the key pathogenic event in this disease (Payman et al., 1992 and Joseph and Boros, 1993). Beside the possible role of TNF- α in host defense against parasitic infection and tumour cell growth, it appears to have a more general role as an effector molecule in various inflammatory processes. The gene coding for human TNF- α has been cloned (Wang et al., 1985) and mapped to the short arm of chromosome six, and is in close linkage with genes of the major histocompatibility complex (MHC) (Speis et al., 1986). Since, some haplotypes of the MHC are associated with certain diseases, the possibility of abnormal TNF gene expression as a factor in various disease mechanisms has been proposed (Maury and Teppo, 1989).

The association between schistosomiasis and arthritis was reported by Mousa and El-Garem (1956) and the term "bilharzial arthropathy" was introduced by Bassiouni (1962). However, the term bilharzial or schistosomal arthropathy is still in need for further research to add more in its pathogenesis and more in its criteria for diagnosis and discrimination of it from other types of arthritis or arthropathies.