LOCAL GYPSUM & ITS USES IN BUILDING CONSTRUCTION

Thesis

SUBMITTED FOR THE DEGREE OF

MASTER OF SCIENCE

in civil engineering

To The

AIN SHAMS UNIVERSITY

FACULTY OF ENGINEERING

By Alvered

Ahmed Fathy A. Abdel-Aziz

B.Sc. Civil Engineering 1978

AIN SHAMS UNIVERSITY

2.566

SUPERVISED BY :

Dr. Abd-El-Kerim Atta

Prof of Properties and Testing
of materials

AIN SHAMS UNIVERSITY

Dr. Hassan Taha El-Arrousy

Prof. of Properties and Testing

of Materials

AL - AZHAR UNIVERSITY

Dr. Samir Okba

Ass. Prof of Properties and Testing of materials

AIN SHAMS UNIVERSITY

1985

ACKNOWLEDGEMENTS

The writer wishes to express his gratitude and sincere appreciation to Professor Dr. Abd El-Kerim Atta, Professor of strength of materials, Faculty of Engineering, Ain Shams University, for his guidance; supervision and continuous encouragement he generously offered during this work.

The writer is very grateful to **Dr.** Hassan Taha El-Arrousi, Professor of strength of materials, Faculty of Engineering, El-Azhar University, and **Dr.** Samir Hassan Okba, Assistant Professor of strength of materials, Faculty of Engineering, Ain Shams University, for their kind suggestions and precious advices during this investigation.

The writer also, express a lot of thanks to the staff of El-Ballah Gypsum Company, and the Suez Canal Research Center, for their help, he is deeply indebted to them.

The help and assistance given by the staff of the testing materials laboratory of the Faculty of Engineering, Ain Shams University, are highly appreciated.

TO MY PARENTS

CONTENTS

	Page
INTRODUCTION	
CHAPTER I: REVIEW OF LITERATURE	
1-1 Historical Note	1
1-2 Definition of gypsum	10
1-3 Gypsum Raw Material in Egypt	11
1-4 Gypsum Plaster	14
1-4-1 Manufacture	14
1-4-1-1 Egyptian Factories for Gypsum Industry	14
1-4-1-2 Method of Manufacture	15
1-4-2 Types of Gypsum Plasters	17
1-4-3 Setting of Gypsum Plasters	
1-4-4 Hardening of Gypsum Plasters	
1-4-5 Additives for Gypsum Plasters	
1-4-6 Standard Specifications	
1-4-6-1 Properties of Gypsum Plaster	25
1-4-6-2 Tests for Gypsum Plaster	
1-5 Gypsum Products	31
1-5-1 Types	31
1-5-2 Gypsum Blocks	• • •
1-5-2-1 General	31
1-5-2-2 Manufacture Method	38
1-5-2-3 Standard Specifications	42
1-5-3 Gypsum Plaster Boards	43
1-5-3-1 General	43
1-5-3-2 Manufacture Method	45
1-5-3-3 Standard Specifications	47
1-6 Previous Researches on Gypsum in Egypt	49
1-6-1 M.A. Gouda Research	49
1-6-2 Cairo University & Massachusetss Institute of Technolo	
Research	54

	Page
CHAPTER II: SCHEDULE OF RESEARCH WORK	
2-1 Study of calcination temperature effect on gypsum properties	70
2-2 Study of additives effect on gypsum properties	73
2-3 Study of gypsum blocks properties	75
2-3-1 Tests on specimens prepared from gypsum blocks	75
2-3-2 Tests on the gypsum blocks itself	75
CHAPTER 111: EXPERIMENTAL INVESTIGATION ON GYPSUM CALCINATION	
3-1 Introduction	79
3-2 Purity of gypsum ore	80
3-3 Grinding of gypsum ore samples	83
3-4 Calcination of gypsum ore	85
3-5 Mechanical properties of calcined gypsum material	89
3-6 Discussion of test results	94
3-6-1 Fineness of gypsum plaster	94
3-6-2 Water plaster ratio	95
3-6-3 Setting time of gypsum plaster	95
3-6-4 Flexural strength of gypsum plaster	96
3-6-5 Summary of test results	97
CHAPTER IV: ADDITIVES EFFECT ON GYPSUM PROPERTIES	
4-1 Introduction	99
4-2 Tests	101
4-2-1 Procedure	101
4-2-2 Test specimens	101
4-2-3 Methods of testing	101
4-2-3-1 Setting time test	102
4-2-3-2 Flexural strength test	104
4-2-3-3 Compressive strength test	104
4-2-3-4 Workability "spread value" test	107
4-3 Additive test results	109
4-3-1 Alumn Additive	110
4-3-? Clay Additive	113
4-3-3 Colours Additive	116
4-3-3-1 Red colour additive	116
4-3-3-2 Other colours additive	119

		Page
	4-3-4 Karnak Cement Additive	105
	4-3-5 Lime Additive	
	4-3-6 Sodium Chloride Additive	
	4-3-7 Relations between comp. & Flex. Strengths	
4-4	Discussion	139
CHAF	PTER V: STUDY OF GYPSUM BLOCKS PROPERTIES	
Part	<u>t. 1.</u>	
5-1	Testing of specimens prepared from blocks	155
	5-1-1 Preparation of test specimens	
	5-1-2 Compression test	156
	5-1-3 Flavural Atravath tout	160
	5-1-4 Water absorption test	205
	5-1-5 Abrasion test	216
	5-1-6 Heat test	
	5-1-7 Discussion	
Part	11.	
5-2	Testing of gypsum blocks	227
	5-2-1 Compression tests for gypsum blocks units	
		227
	5-2-1-2 Two blocks unit	
ı	5-2-1-3 Three blocks unit	
;	5-2-2 Discussion	275
Part	<u>1</u> 11.	
5-3 7	Testing of gypsum blocks wall	279
Į	5-3-1 Flexural strength test of gypsum block wall	279
	5-3-1-1 Gypsum solid block wall	
	5-3-1-2 Gypsum hollow block wall	
	5-3-1-3 Discussion	
5	-3-2 Hardness test for gypsum wall	
	5-3-2-1 Hardness survey test	
		313

	Page
Part IV.	
5-4 Discussion of the Egyptian Standard Specification of gypt blocks No. 1554/85	
CHAPTER VI: CONCLUSIONS AND RECOMMENDATIONS	
6-1 Conclusions	317
6-2 Recommendations	325
7- REFERENCES	328
8- ARABIC SUMMARY	

INTRODUCTION

Gypsum is one of the oldest building materials; it was widely used by Ancient Egyptians as a coating material for walls and ceilings of dwellings and temples besides its use as a cementing material for repairs. Herodotes stated its abundant ores and its common and vast uses in Egypt at that time such that gypsum name is derived from the name of Egypt. After that time, other civilizations passed away with its big attention to gypsum uses, especially, the Islamic civilization where its use extended to be a material for manufacturing structural elements.

Nowadays, Arab Republic of Egypt is in thirst need for local building materials, and since the gypsum ore is found in many big quarries in Egypt besides the initiative begining of manufacturing gypsum blocks and gypsum boards, therefore this research work was carried out to determine the properties of local gypsum and gypsum blocks from the results of experimental investigation to get handy data for users in building area about the chemical, physical and mechanical properties. This will be useful as technical data in construction zone and as an advantage to national economy.

The gypsum ore at Ballah area northen Ismaillia is the base of gypsum used in this research; the specimens were

extracted from the center of the quarry where the ore is pure. Also specimens of the ore were extracted from quarry extremities where the ore is impure. Gypsum plaster was manufactured from the ore by incomplete dehydration from each of pure and impure ore by calcination at different temperatures 100° , 130°, 160°, 190°, 220°, 250°, 300° and 400°C. This is to determine the effect of calcination heat on the produced gypsum plaster and to determine also the degree of calcination for economically incomplete dehydration giving **qypsum** plaster with suitable properties for constructional uses. Also grinding process was carried out for either pure & impure ore before calcination and after calcination to state which of the four cases of such processes is suitable for manufacture of gypsum plaster. produced gypsum, as previously The mentioned was tested for fineness, setting time and flexural strength according to the Egyptian Standard Specifications.

Specimens of locally manufactured gypsum - from pure ore calcined at 190°C and ground after calcination - were prepared by adding materials to gypsum plaster to get better required properties. Such materials were Alumn, Clay, Coloured materials, Karnak cement, Lime and Sodium chloride. These additives were taken as percentage of gypsum plaster weight namely 0%, 1%, 2%, 3%, 5% and 8% for each case except for Karnak cement and Lime 20% also was added. Then tests were

g

carried out for getting the workability, setting time, 7 days compressive strength and one & seven days flexural strength, according to the Egyptian Standard Specification. This is to determine the effect of each of these additives on the previously mentioned gypsum properties to recommend its advantageous use.

The study was also carried out for gypsum blocks as found in the market with dimensions 66X50X8 & 10 cms as solid blocks or as block with cylinderical holes. These two types of gypsum blocks were tested in two cases; in the first case, specimens were prepared from the gypsum block to determine the unit weight, absorption %, abrasion resistance, flexural strength and compressive strength for dry specimens, Also, compressive strength was determined for wet specimens resulting from the immersion of dry pieces in water for $\frac{1}{2}$, 1, 3, 12 & 24 hours. Besides other dry pieces were subjected to heat of 200°C for 0, 1, 2, 3 & 6 hours to determine such effect compressive strength of the specimens. The second case for testing gypsum blocks was to apply compression load for blocks as one block or as unit prepared from two or three blocks glued together as continuous or staggered joints. Then each tested compression piece the lateral deformation were recorded at each applied load; besides the max. and the state of failures were recorded. Hardness testing were carried out for the surface of these blocks and hardness survey was made by drawing the hardness contour lines.

Also, the gypsum blocks were tested as a wall of 4 blocks in length and 2 blocks in width, cemented in staggered joints. This wall which was made once from solid blocks and in the other case from hollow blocks, and every wall was subjected lateral flexural uniformily distributed load to represent the case of side push during service of the wall. This load applied gradually using layers of sand, till failure. was deflections were recorded along the span of the wall supports, besides, the strains were also between at different points of the wall cross section using electrical resistance and mechanical strain gages. Also, the maximum load and the state of failure were noticed for each of the tested walls.

The thesis consists of six chapters and references. first chapter contains the review of literature which includes historical note, the gypsum ores, types and quarries in Egypt and summary of researchs carried out in Egypt about gypsum and gypsum products. Chapter two states the research programme. Chapter three contains the effect of calcination different temp. degrees from 100°C into 400°C on the resulted gypsum properties which is ground before calcination after calcination. Chapter four shows the effect of additives alumn, clay, coloured materials, Karnak cement, Lime of and sodium chloride - on gypsum plaster properties. Chapter tive includes the test results of solid and hollow blocks

as prepared specimens from gypsum blocks or as unity, as glued unit of 2 or 3 blocks with continuous or staggered joints, and as a wall of glued blocks with staggered joints. This chapter also, includes the discussion of Egyptian Standard Specifications for gypsum blocks compared to that of the American Standard Specifications. Chapter six gives the conclusions and recommendations.

The experimental investigation in this thesis reaches important results as illustrated later with respect to the effect of impurities, the effect of calcination temperature degree and the effect of certain additives on gypsum plaster properties. Other important results were obtained with respect to the properties of gypsum specimens prepared from gypsum blocks taken from Egyptian market as old product in 1984 and as a new product in 1985. Besides the properties of solid and hollow gypsum blocks as a result of the previously mentioned tests were determined. The thesis reaches important recommendations with respect to the degree of calcination for gypsum ore to be 220°C instead of 165° to 195°C used in many Egyptian factories, and with respect to the advantageous use of certain additives.

The thesis also recommends carrying out studies to improve the resistance of gypsum blocks to water effect and heat effect and to increase its rigidity and strength by adding

certain fibers to gypsum mix. Other recommendations are given with respect to ameliorating the Egyptian Standard Specifications for gypsum blocks No 1554/1985 by carrying out certain amendements leading to benificial items for quality control for the local production. The work of this research recommends also, the studying of a newly manufactured local gypsum boards to make it in suitable condition before putting it in service to avoid the defective points raised in this research against gypsum blocks.

CHAPTER [I]