

IN SHAMS UNIVERSITY ACULTY OF ENGINEERING DEPARTMENT OF DESIGN & PRODUCTION ENGINEERING

TYRE TREAD TEMPERATURE UNDER DIFFERENT WORKING CONDITIONS

A Thesis submitted for the Partial Pulliliment of the Degree of Master of Sowice in Mechanical Engineering

Ву

ABDALLAH SELIM ANDRAWES (B.Sc. Mech. Eng. 1968)

DR A M HUSSEIN

DR T A NOSSEIR

Supervised by

ASSOCIATE PROPESSOR

ASSOCIATE PROFESSOR

CAIRO, JULY, 1987

iners Committee

Professor of Automotive Engineering.

Ain Shams University, Faculty of Engineering.

. Taj. Gen. Dr. M.H. Azmy

Consultant at the General Organization for

Industrialization.

3.Dr. T.A. Nosseir (Supervisor)
Associate Professor.
Ain Snams University, Faculty of Engineering.

Ain Snems University, Faculty of Engineering.

STATEMENT

This dissertation is submitted to Ain Shems university for the degree of Master of Science in Mechanical Engineering.

The work included in this thesis was carried out by the auther in the Department of Design & Production Engineering, Ain Shams University, from November 1980 to July 1987.

No part of this thesis has been submitted for a degree or a qualification at any other University or Institution.

Date :

Signature: A.S. Andraus

Name : A. S. ANDRAWES

CONTENTS

	Page			
ACKNOWLEDGEMENT				
GLOSSARY	i			
SUMMARY	iii			
NOTATION	v			
INTRODUCTION	1			
CHAPTER ONE: EXPERIMENTAL WORK	4			
1.1 Introduction	4			
1.2 Test Rig Description	5			
1.3 Measurements	7 7			
1.3.2 Tyre Tread Temperature Measurement	8			
1.4 Tested Tyre	9			
1.4.1 Test Routine	9			
1.5 Test Procedure	10			
1.5.1 Correction of Experimental Temperature Readings	11			
1 6 Europimontol Bogulta	12			
1.6 Experimental Results	12			
1.6.2 Tread Temperature and Inflation Press-	4.4.			
ure	12			
1.6.3 Tread Temperature and Depth	13			
CHAPTER TWO: MATHEMATICAL REPRESENTATION OF EXPERIMEN-				
TAL RESULTS	14			
2.1 Introduction	14			
2.2 Tyre Tread Temperature	14			
2.2.1 Evaluation of Coefficients in Tempera-	16			
ture Equation	16			
CHAPTER THREE: DISCUSSION OF RESULTS 1				
3.1 Introduction	18			
3.2 Speed Effect	18			
3.3 Inflation Pressure Effect	21 24			

	Page
CHAPTER FOUR: CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK	28 28 30
REFERENCES	31
APPENDICES:	
APPENDIX (1) Description and Specifications of Vertical Tyre Testing Machine (VTTM)	!
APPENDIX (2) Heat Data Transfer Unit (HDTU) APPENDIX (3) Description and Specification of THERM 2220-3	
APPENDIX (4) THERM 2220-3 Calibration	
APPENDIX (6) General Heat Conduction Equation APPENDIX (7) Computer Program	
FIGURES	ı
TABLES	,
PLATES	
TYRE TEST SHEETS	
ADADIC CUMMADV	

ACKNOWLEDGEMENT

The author wishes to express his deep gratitude to his supervisores Dr.T.A.Nosseir and Dr.A.M.Hussein for their guidance and encouragement during this work.

The author would like to thank the former directors of Armed Forces Technical Research Center Maj. Gen. Dr. Mohammed H. Azmy and Maj. Gen. Dr. Yousry A. Khattab for their great encouragement and help.

The author would like to thank Lt. Col. Dr. Safwat Zahran for his great help during the work concerning the computer.

The author also wishes to acknowledge all the staff of the Armed Forces Technical Research Center Automotive Laboratory and all those who were helpful in producing the thesis in its present form.

GLOSSARY

These glossary is taken from 1982 . SAE HANDBOOK , pp29.01

Bias Ply Tyre

Freumatic tyre in which ply cords extending to the beads, are laid at alternate angles less than 90 degrees to the centerline of the tread. The angle between two consecutive tread fibers is called the crown angle.

Tread

Portion of tyre which comes in contact with terrain .

Side Wall

Portion of tyre between tread and bead .

Bead

Part of the tyre which is shaped to fit the rim , made of high tensile steel wires , wrapped and reinforced by the plies .

Carcass

Tyre structure, except tread and sidewall rubber.

Ply

Layer of rubber - coated parallel cords forming tyre body.

Cord

Textile, steel wire strands, and the like, forming the plies in the tyre.

Ply Rating

Index of tyre strength, does not necessarily represent the actual number of plies in the tyre. It is used to relate a given size tyre with its load and inflation limits.

SUMMARY

Due to the existance of hysteresis in a loaded rolling tyre, an appreciable heat is generated. The generated heat dissipates with different rates of conductivity for a certain type according to many parameters e.g. speed, inflation pressure, depth of tread, road condition and surface material.

In this work, the effect of some parameters " speed, inflation pressure and rubber depth " on the temperature distribution within the tyre tread has been investigated. Experimental work was carried out to reach the steady state under definite operating conditions for the tested tyre, in the tyre tread section, before measuring the temperature and its distribution.

The theoretical work out-lined a mathematical relationship between the temperature and these parameters for a definite operating conditions as well as the temperature distribution across the tyre tread.

The tyre shoulder is found to be the hottest region, and the tyre tread temperature distribution at a certain depth is a polynomial relation of third order between

temperature and positions from the right shoulder to the left one .

The equation of the temperature as a function of the speed, inflation pressure or depth realizes the general solution of the heat conduction equation.

In-general the temperature of the tyre increases with increase in speed, depth while decreases with increase of inflation pressure. The rate of variation differs according to test conditions .

The test procedure outline can be adopted as a code for determination of the most favorite working condition for a certain type. Comparative evaluation of tyre durability can also be judged by this test code. It is a quick and economic way with no need for the todays practice which lasts for more than 45 hours for one tyre .

Note:

Right and left shoulders are to be in the site of the vehicle inner axis in the direction of motion .

V

NOTATION

	Please con contant for the	
	Please, see contex for precise meaning of the	e symbols.
a i	i = 0,1,2, Constants of temperature	
	speed equation	-
c	Specific heat	kj/kg C
c j	j = 0,1,2, Constants of temperature	
ز	inflation pressure equ.	
d k	$k = 0, 1, 2, \dots$ Constants of temperature	
	depth equation	-
k	Thermal conductivity	W/m C
n;	Mumber of data points	
n	Order of the polynomial	_
p	Inflation pressure	psi
p z	Vertical load	kp
ď	Energy generated per unit vol.	3 kj/m
△t	Tyre deflection under load	$\mathbf{n}_{\mathbf{m}}$
t	Depth 'inside tread section'	nim
T	Temperature	c C
v	Equivalent vehicle speed	km/h
X	Operating variable	_
\propto	Thermal diffusivity	2 m /s
8	Density	kg/m
~	Time	S
[]	Square bracket contains base	
	level values	

Other symbols are considered and will be defined in due course.

INTRODUCTION

Generally, the function of the tyres is to form a cushion between the road and the vehicle wheels. So, they absorb the shocks resulting from holes and bumps in the road. Also they provide the good adhesion between the wheels and the road during acceleration and deceleration of the vehicle. Tyre casings are made of layers cord impregenated with rubber. The rubber of the sidewalls and the tread are constructed over the cord. The layers of cord called the plies. The plies tend to move against each other when the tyre is in function. This produces particularly at high speed.

Heat build-up is so important to tyre durability that new measurement methods are continually being sought by the rubber tyre manufactures. Many of the methods used in the past have involved electrical transducers, either embeded in the running tyre, or inserted in the stationary tyre after (1*) the desired warm-up.

Conant, et. al. defined the surface temperature of running tyres by using an infra-red line scanning system. Surface temperature of tyres was measured under operating conditions by changes in tyre speed, inflation pressure and load. It was found that these effects are different at different radii positions on a given tyre and quite

^{*} References are given at the end.

dependent on the tyre construction "bias, belted bias and radial " of the same size.

The transducers most often used have been thermocouples, which can be small enough to minimize the effects of both heat generation and conductive cooling at the test site. Thermocouples or thermistors for active service may be cemented into holes drilled into the (3) completed tyre, they may be placed in the green tyre during the building process.

Limitations on transducers of the tyre, mention before, include the destructive nature of the test and the single point response. At least two nondestructive averaging methods have been used by the engineers, contained air temperature measurement, and nonscanning infra-red (5) sensors. The former is related to the rate of energy absorption of the entire tyre and the latter to the average surface temperature of the tyre annulus in the field of vision.

Each of these is an important index of tyre performance but neither is sufficiently specific for tyre tread temperature distribution with respect to depth specially for tyre development, testing control and vehicle rolling resistance.

Thus the purpose of this work is:

1- To establish an appropriate method to measure the

tyre temperature.

2- To find the tyre tread temperature distribution with respect to depth under different operating conditions.