
PERFORMANCE AND ITS RELATION TO PULMONARY FUNCTION TESTS IN ASTHMATIC CHILDREN

THESIS

· 618.9223

Submitted for partial fulfilment of the

M.D. Degree in Pediatrics

By

ESSAM SAYED MOHAMED ALI HEIKAL

M.B., B.Ch., M.Sc.

Supervised by

56260

PROF. DR. ABD EL KHALIK KHATTAB

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

PROF. DR. SAWSAN AMIN EL SOKKAR

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

PROF. DR. KARIMA AHMED ABD EL KHALEK

Professor of Pediatrics
Faculty of Medicine – Ain Shams University

Faculty of Medicine Ain Shams University 1994 بسم الله الرحمن الرحيم
« قالوا سبحانك لا علم لنا إلا ما
علمتنا إنك أنت العليم الحكيم »
حدق الله العظيم
(سورة البقرة أية ٢٢)

Affectionately Dedicated To ...
The Soul of My Father
The Soul of My Professor
Professor Dr. Abd El Khalik Khattab
And To My Family

ACKNOWLEDGEMENT

My thanks are first given to ALMIGHTY GOD without whose divine help this work would have not been accomplished.

I dedicate this work to the soul of my Professor, Prof. Dr. Abd El Khalik Khattab, Professor of Pediatrics, Ain Shams University, for giving me the privilege of working as a member of his magnificent team for the last seven years. My thanks and appreciation for his continuous encouragement and valuable guidance.

I would like to express my sincere gratitude and heartfelt thanks to the eminent Prof. Dr. Sawsan Amin El Sokkary, Professor of Pediatrics, Ain Shams University, for giving me the privilege of working under her supervision. Her constant encouragement, close supervision and constructive guidance were the paramount axes in the initiation and progress of this work. My debt of gratitude for her constant support, valuable advice and remarks that have been of utmost help. She gave me a lot of her valuable time to improve the quality of this work and words will never by enough to express my appreciation of her effort.

Ahmed Abd El Khalek, Professor of Pediatrics, Ain Shams University, for her selection of the subject of this thesis, her remarkable effort, kind help and continuous guidance, which were the major factors behind the completion of this work. My deep gratitude goes to her faithful supervision, her active, skillful participation, great cooperation and her meticulous revision of this work. Her systematic guidance, generous encouragement, useful comments, bright opinions, persevering aid and support were of great help to me in putting this work in its final formation.

I wish also to thank my small family, my mother, my sister and my wife, for their forbearance. They were a real support when things got tough.

My thanks and appreciation to all my colleagues in the Pediatrics Department, Ain Shams University, who participated in this work in one way or another. I am most grateful to them.

Last, but not – by all means – least, I thank all the patients of this study and their families, for without their cooperation, this work would have never been accomplished. God bless them all.

Essam Heikal

1994

ABBREVIATIONS

A-mode Amplitude mode

A-wave Late peak filling velocity

A.S.E. American Society of Echocardiography

A/D Analogue-digital AC Aortic closure

AMV Anterior mitral valve leaflet ANOVA Analysis of variance test

AO Aorta

ARV Anterior right ventricular wall

AV Aortic valve
B B-lymphocytes
B-mode Brightness mode

C3 Complement number 3

CC Closing capacity

Ccw Chest wall compliance cDNA Desoxyribonucleic acid Cdyn Dynamic compliance CL Lung compliance

cm Centimeters

C_{st} Static compliance

C_T Total compliance of the respiratory apparatus

CV Closing volume CW Chest wall

E-wave Early peak filling velocity

ECG (EKG) Electrocardiogram

EDD End diastolic dimension

EDV End diastolic volume

EF% Ejection fraction percent

EN Endocardium of the left ventricle

EO Eosinophils

Epicardium of the left ventricle EP Expiratory reserve volume **ERV ESD** End systolic dimension End systolic volume **ESV** Forced expiratory flow after 25% of the FVC has FEF25% been exhaled Mean forced expiratory flow during middle half FEF25-75% of FVC Forced expiratory flow after 50% of the FVC has FEF50% been exhaled Forced expiratory flow after 75% of the FVC has FEF75% been exhaled Maximum flow achieved during a forced FEF_{max} exhalation, i.e., during the FVC maneuver Forced expiratory flow, (where x is the duration FEF_{x} on FVC curve) Forced expiratory time for a specified portion of FET_x the forced vital capacity. Forced expiratory volume (timed) FEV. Forced expiratory volume (timed) to forced vital FEV_t/FVC% capacity ratio Forced inspiratory flow after 25% of the FVC has FIF25% been inhaled Forced inspiratory flow after 50% of the FVC has FIF50% been inhaled Forced inspiratory flow after 75% of the FVC has FIF75% been inhaled. Forced inspiratory flow, (where x is the duration FIF_x on FVC curve) Forced inspiratory vital capacity **FIVC** Functional residual capacity **FRC** FS% Percentage fractional shortening Forced vital capacity **FVC** Conductance G_{aw} Human Histocompatibility Complex H.L.A.

H.R. Heart rate

HCO₃- Bicarbonate level in the blood

i.e. That is to say

IC Inspiratory capacity

IC Isovolumetric contraction

IgE Immunoglobulin E

IL Interleukin

IRV Inspiratory reserve volume IVC Inspiratory vital capacity IVS Interventricular septum

LA Left atrium
Lambda (λ) Wavelength
LAW Left atrial wall
LS Left septum
LV Left ventricle

LVD Left ventricular dimension
LVET Left ventricular ejection time

LVIVRP Left ventricular isovolumetric relaxation period

LVOT Left ventricular outflow tract

M-mode Motion mode

 $M_{1, 2, 3}$ Muscarinic subtypes of receptors in the

respiratory system

MC Mast cells
MC Mitral closure
Mc Mitral closure

MEFV Maximal expiratory flow-volume MHz Mega Hertz (frequency unit)

MMEF Maximum mid expiratory flow

mmHg Millimeters of Mercury

MV Mitral valve

MVV_x Maximum voluntary ventilation NCA Neutrophil chemotactic activity

OS Opening snap
PA Pulmonary artery

PaCO₂ Arterial carbon dioxide tension

PaO₂ Arterial oxygen tension **PAW** Posterior aortic wall Pc Pulmonary Closure **PEF** Peak expiratory flow PEP Pre ejection period

PER Pericardium

PFT Pulmonary function tests PLA Posterior left atrial wall

PLV Posterior left ventricular wall **PMV** Posterior mitral valve leaflet **PPM** Posterior papillary muscle PRF Pulse repetition frequency

PV Pulmonary valve

PWT Posterior wall thickness of left ventricle

Q-S Electromechanical systole

RASF Rapid acceleration of systolic flow of right

ventricle

RAST Radioallergosorbent test

 R_{aw} Airway resistance RS Right septum

Rт Total respiratory resistance

RVResidual volume RV Right ventricle

RV/TLC% Residual volume to total lung capacity ratio

RVEDD Right ventricular systolic dimension RVEDV Right ventricular diastelic volume **RVESV** Right ventricular end systolic volume

RVET Right ventricular ejection time **RVH** Right ventricular hypertrophy

RVIVRP Right ventricular isovolumetric relaxation period

RVOT Right ventricular outflow tract

RVPEP Right ventricular pre-ejection period **RVWT** Anterior right ventricular wall thickness S Sternum

S_{1, 2, 3, 4} First, second, third and fourth heart sound

SG_{aw} Specific conductance

ST Septal thickness. At end systole (S) and at end

diastole (D)

T T-lymphocytes
T Transducer

T.R. Tricuspid regurgeTC Tricuspid closureTLC Total lung capacityTM-mode Time-motion mode

TV or Vt Tidal volume
TV Tricuspid valve

V_A Álveolar gas volume

VC Vital capacity

VIP Vasoactive inhibitory peptide
VL Actual volume of the lungs
VLA-I Very late activation antigen

V_{max x} Forced expiratory flow related to total lung

capacity

 ΔP Change in pressure

 ΔV Change in flow in liters per second

-viii-

CONTENTS

		Page
Acknowledgement		i
Abbreviations		iii
Contents		viii
List of Tabl	es	ix
List of Figures		xii
Introduction		1
Aim of the Work		3
Review of Literature		4
Chapter I:	Bronchial Asthma in Infancy and Childhood	4
Chapter II:		48
Chapter III:	Principles of Echocardiography	80
Chapter IV:	Effect of Bronchial Asthma on Cardiovascular Function	116
Subjects and Methods		139
Results and Their Analysis		166
Discussion		261
Summary and Conclusion		286
Recommendations		
References		289
Arabic Summary		291
riable Sullill	iai y	317

LIST OF TABLES

		Page
Table 1:	Mononuclear phagocyte products having a role in asthma syndromes.	25
Table 2:	Pathological changes in asthma and the mediators possibly responsible.	38
Table 3:	Pathologic changes in the airways of bronchial asthma.	39
Table 4:	Arterial blood gases profile in asthma.	45
Table 5:	Indications for pulmonary function testing in asthmatic children.	49
Table 6:	Prediction equations for spirometry in children.	58
Table 7:	Prediction equations for lung volumes in children.	58
Table 8:	Differential diagnosis of obstructive and restrictive lung diseases.	59
Table 9:	Flow diagram for interpretation of spirometric data.	60
Table 10:	Values of pulmonary function in infants: in normal term, in respiratory distress syndrome and in bronchopulmonary	
Table 11:	dysplasia.	79
Table 11.	Maximal peak velocities in normal individuals meter per second recorded by Doppler ultrasound.	102
Table 12:	The spectrum of pulmonary hypertension in paediatric patients.	122
Table 13:	Classification of cor pulmonale in children.	125
Table 14:	ANOVA test between mean FVC% values of the four different groups.	167
Table 15:	ANOVA test between mean FEV1% values of the four different groups.	169
Table 16:	ANOVA test between mean FEF25%-75% of the four different groups.	171
Table 17:	ANOVA test between mean FEF25% values of the four different groups.	173
Table 18:	ANOVA test between mean FEF50% values of the four different groups.	175
Table 19:	ANOVA test between mean pulmonary compliance values of the four different groups.	177
Table 20:	ANOVA test between mean pulmonary resistance values of the four different groups.	179
Table 21:	ANOVA test between mean right ventricular ESV values of the four different groups.	181
Table 22:	ANOVA test between mean right ventricular EDV values of the four different groups.	183
Table 23:	ANOVA test between mean RVPEP values of the four different groups.	185

		Page
Table 24:	ANOVA test between mean RVET values of the four different groups.	187
Table 25:	ANOVA test between RVPEP/ET ratio values of the four different groups.	189
Table 26:	ANOVA test between mean tricuspid E-F slope values of the four different groups.	191
Table 27:	ANOVA test between mean tricuspid E-wave values of the four different groups.	193
Table 28:	ANOVA test between mean tricuspid A-wave values of the four different groups.	195
Table 29:	ANOVA test between mean tricuspid E/A ratio values of the four different groups.	197
Table 30:	ANOVA test between mean RVIVRP values of the four different groups.	199
Table 31:	ANOVA test between mean RVWT values of the four different groups.	201
Table 32:	ANOVA test between mean right ventricular EDD values of the four different groups.	203
Table 33:	ANOVA test between mean right ventricular rapid acceleration of systolic flow values of the four different groups.	205
Table 34:	ANOVA test between mean left ventricular ESD values of the four different groups.	207
Table 35:	ANOVA test between mean left ventricular EDD values of the four different groups.	208
Table 36:	ANOVA test between mean left ventricular FS% values of the four different groups.	209
Table 37:	ANOVA test between mean left ventricular EF% values of the four different groups.	210
Table 38:	ANOVA test between mean aortic acceleration time values of the four different groups.	211
Table 39:	ANOVA test between mean aortic deceleration time values of the four different groups.	212
Table 40:	ANOVA test between mean aortic peak velocity values of the four different groups.	213
Table 41:	ANOVA test between mean time velocity integral of aorta values of the four different groups.	214
Table 42:	ANOVA test between mean left ventricular ejection time values of the four different groups.	215
Table 43:	ANOVA test between mean left atrial dimension values of the four different groups.	216
Table 44:	ANOVA test between mean aortic dimension values of the four different groups.	217
Table 45:	ANOVA test between mean left atrium /aortic dimension values of the four different groups.	218

Table 46:	ANOVA test between mean Mitral E-F slope values of the	Page
Table 47:	roar afficient groups.	219
1401047.	ANOVA test between mean Mitral E-wave values of the four different groups.	
Table 48:	ANOVA test between mean Mitral A wave values of the four different groups.	
Table 49:	ANOVA test between mean Mitral E/A ratio values of the four different groups.	221
Table 50:	ANOVA test between mean LVIVRP values of the four different groups.	222
Table 51:	ANOVA test between mean Mitral E deceleration time and	223
Table 52:	of the four different groups. ANOVA test between mean Mitral flow E-deceleration slope values of the four different groups.	224
Table 53:	randes of the four different groups.	225
1 able 55;	ANOVA test between mean eccentricity index at end systole values of the four different groups.	227
Table 54:	ANOVA test between mean eccentricity index at end diastole values of the four different groups.	226
Table 55:	Correlation between pulmonary function tests and echocardiographic indices of right ventricle in severe asthmatic children.	228
Table 56:	Correlation between pulmonary function tests and arterial blood gases in severe asthmatic children.	230
Table 57:	Pulmonary function data, ECG and echocardiography in mild cases (Group A).	244
Table 58:	Pulmonary function data, ECG and echocardiography in moderate cases (Group B).	245-248
Table 59:	Pulmonary function data, ECG and echocardiography in severe cases (Group C).	249-252
Table 60:	Pulmonary function data, ECG and Echocardiography	253-256
	in non-asthmatic children (Group D).	257-260