EVALUATION OF Ox-LDL ANTIBODIES AS A MARKER FOR HIGH RISK OF CORONARY ARTERY DISEASE (CAD)

Thesis

Submitted for partial fulfillment of Master Degree in Clinical and Chemical Pathology

By

Ayman Mohamed Nabil M.B.,B.Ch.

Under Supervision of

Prof.Dr. Sawsan Hossni Hamza

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

Prof.Dr. Nadia Aly Abd El Sattar

Professor of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

Dr. Mona Mohamed Zaki

Lecturer of Clinical and Chemical Pathology Faculty of Medicine, Ain-Shams University

> Faculty Of Medicine Ain-Shams University 1997

Acknowledgement

Before all, I would like to express my deep thanks to **ALLAH** without his great blessings, I waould never accomplish this work.

I wish to express my sincere gratitude and appreciation to **Prof. Dr. Sawsan Hossni Hamza**, Professor of Clinical and Chemical Pathology, Ain Shams University, for giving me the privilege of working under her supervision, eminent guidance and continuous encouragment. No words can express my respects to her thoughtfulness and overwhelming kindness.

My deepest thanks and most sincere gratitude go to **Prof. Dr. Nadia Aly Abd El Sattar**, Professor of Clinical and Chemical Pathology, Ain Shams University for her close supervision, generous guidance, enlightening suggestions and creative idea. I must admit that I consider myself very fortunate and I am proud to have worked under her supervision.

I want to thank **Dr. Mona Mohamed Zaki**, ecturer of Clinical and Chemical Pathology, Ain hams University for her valuable instructions and ritical mind that brought out the final points of my esearch and opened new paths of thought which were formerly closed.

I am deeply indepted to **Dr. Mohamed Ayman Mostafa Abd El Wahab Saleh**, Lecturer of Cardiology, Ain Shams University, for his valuable support during this work. I would like to take this opportunity to thank hem for everything he has done for me.

ABSTRACT

In this work in order to evaluate oxidized low density lipoprotein autoantibodies (o-LAB) as a marker for coronary atherosclerotic disease (CAD), lipid profile and o-LAB were assayed in 60 male subjects [who were classified according to their angiographic findings into mild CAD patients (n=17), moderate CAD patients (n=19), severe CAD patients (n=13) and normal control subjects (n=11)]. Total cholesterol (TC) and triglycerides (TG) analysis was done by an enzymatic colorimetric method. lipoprotein-cholesterol density (HDL-C) was measured after precipitation of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) in serum using phospho-tungestic acid. LDL-C was calculated using Friedwald formula and also TC/HDL-C ratio was calculated. o-LAB assay was done using an ELISA technique.

o-LAB was proved using Kruskal Wallis test to be the parameter which vary most significantly between the four groups, followed by LDL-C, TC and TC/HDL-C ratio. TG and HDL-C showed no statistical variations between the four groups.

Using Wilcoxon rank sum test to compare between ch two groups o-LAB was more discriminating between e different degrees of CAD, while TC, LDL-C and C/HDL-C ratio seemed to be higher in patients with evere CAD.

The results of ROC curve analysis for o-LAB revealed that 180 mU/mL cut off level is the most sensitive and specific point.

List of contents

	page
List of abbreviations	i
List of tables	ii
List of figures	iii
Introduction and aim of the work	1
Review of literature	2
 Anatomy of the coronary arteries 	2
• Pathology of the CAD	8
 Atherogenesis and risk factors 	19
• Oxidized-LDL (Ox-LDL)	60
 Other new aspects in diagnosis of CAD rather than Ox-LDL autoantibodies 	75
Subjects and methods	87
Results and discussion	98
Summary and conclusion	129
References	132
Arabic summary	

List of abbreviations

ADP Adinosine diphosphate

BMI Body mass index

CAD Coronary atherosclerotic disease

CAS Coronary atherosclerotic score

CD4 Cluster of differentiation 4

CD8 Cluster of differentiation 8

CHD Coronary heart disease

EDRF Endothelial derived relaxation factor

EGF Epidermal growth factor

FCR Fractional catabolic rate

FGF Fibroblast growth factor

HDL-C High density lipoprotein-cholesterol

IDDM Insulin dependant diabetes mellitus

IDL Intermediate density lipoprotein

LDL-C Low density lipoprotein-cholesterol

M-CSF Monocyte-colony stimulating factor

MCP-1 Monocyte chemotactic protein-1

MM-LDL Minimaly modified low density lipoprotein

NIDDM Non-insulin dependant diabetes mellitus

o-LAB Oxidized-low density lipoprotein autoantibodies

Ox-LDL Oxidized-low density lipoprotein

PDGF Platelet derived growth factor

TC Total cholesterol

TG Triglycerides

TGF- β Transforming growth factor- β

VLDL Very low density lipoprotein

List of tables

		page
Table 1	Substances that are secreted by macrophages	13
Table 2	Classification of blood pressure for adults aged 18 years and older	42
Table 3	Criteria for diabetes and glucose intolerance in non-pregnant adult	44
Table 4	Major subspecies of plasma LDL	55
Table 5	Descriptive statistics of studied parameters in the control group	113
Table 6	Descriptive statistics of studied parameters in the mild CAD group	113
Table 7	Descriptive statistics of studied parameters in the moderate CAD group	114
Table 8	Descriptive statistics of studied parameters in the severe CAD group	114
Table 9	Comparison between the assayed parameters in all studied subjects using Kruskal-Wallis test	114
Table 10	Comparison between each two groups as regards TC using Wilcoxon rank sum test	115
Table 11	Comparison between each two groups as regards TG using Wilcoxon rank sum test	115
Table 12	Comparison between each two groups as regards HDL-C using Wilcoxon rank sum test	115
Table 13	Comparison between each two groups as regards LDL-C using Wilcoxon rank sum test	116
Table 14	Comparison between each two groups as regards TC/HDL-C ratio using Wilcoxon rank sum test	116
able 15	Comparison between each two groups as regards o- LAB using Wilcoxon rank sum test	116
Table 16	Chi square test for association of non-lipid risk factors and o-LAB level	117