CELL ADHESION MOLECULES

THESIS

Submitted for partial fulfillment of M.Sc. Degree in Dermatology and Venereology

By
HALA SOBHY EL-SAIAD
M.B., B.Ch.

Supervised by

PROF. DR. MOHAMMED FARID ABD EL-LATIF

Professor of Dermatology and Venereology

Ain Shams University

DR. MAY HUSSEIN EL-SAMAHY

Assistant Professor of Dermatology and Venereology

Ain Shams University

Faculty of Medicine
Ain Shams University
1995

20/7/C0

بسم الله الرحمن الرحيم

« ربِ اوْزِعنِي أَن أَشْكُرُ نِعِـمْتُكَ الَّتِي أَنعـمِتَ علِي ُ وعلى والدي وأن أعـمل صـالدًا ترضاهُ وأدْخلني برحمتك في عبادك الصَّالِدين »

صحق الله العظيم سورة النمل ، آية (١٩)

To ...

My parents,

My husband,

My lovely son.

ACKNOWLEDGEMENT

First I thank "ALLAH" for granting me the power to accomplish this work.

I would like to express my endless gratitude and appreciation to Prof. Dr. Mohammed Farid Abd El-Latif, Professor of Dermatology and Venereology, Ain Shams University, for giving me the honour to work under his meticulous supervision and for providing me with a lot of encouragement and support throughout this whole work and always.

I wish to express my deep appreciation to Dr. May Hussein El-Samahy, Assistant Professor of Dermatology and Venereology, Ain Shams University, for her honest assistance and encouragement in every step of this work. She helped me a lot to accomplish this work in the appropriate way.

Hala Sobhy

CONTENTS

List of Abbreviations		
List of Tables	iii	
List of Figures	iv	
Introduction and Aim of the Work	1	
Review of Literature	3	
Definition And Classification		
Implication in Pathological Non-Malignant Conditions		
Implication in Malignant Conditions	36	
Summary and Conclusion		
References		
Arabic Summary		

LIST OF ABBREVIATIONS

ACAM Adherens junction-specific cell adhesion molecule

BCCs Basal cell carcinomas
BL Burkitt's lymphoma
CAM Call adhesion melacul

CAM Cell adhesion molecule

CD₂ Common differentiation antigen 2

CFx Coagulation factor X

CO Collagen

EBV Epstein-Barr virus
EC Endothelial cells
E-cadherin Epithelial cadherin

ELAM-1 Endothelial leukocyte adhesion molecule-1

FB Fibrinogen

FDEs Fixed drug eruptions

FN Fibronectin

GMP-140 Granule membrane protein 140

GP Glycoprotein

GVHD Graft-vs-host disease HCL Hairy cell leukemia

HEV High endothelial venule

ICAM Intercellular adhesion molecule

IFN-α Interferon alphaIFN-γ Interferon gamma

IL-1 Interleukin-1

LAD Leukocyte adhesion deficiency disease

LAK Lymphokine-activated killer cells

LCAM Liver cell adhesion molecule
LFA-1 Leukocyte function antigen 1

LM Laminin

LPS Lipopolysaccharide mAb Monoclonal antibodies

Mac-1 Macrophage activation antigen 1
MAG Myelin-associated glycoprotein

N-cadherin Neural cadherin

NCAM Neural cell adhesion molecule

NK Natural killer P Polypeptide

P-cadherin Placental cadherin
PG Platelet glycoprotein

RGD Tripeptide sequence arginine-glycine-aspartic acid

SICAM-1 Soluble intercellular adhesion molecule-1

SLE Systemic lupus erythematosus

SSc Systemic sclerosis

TAG-1 Transient axonal glycoprotein-1

TNF Tumor necrosis factor

VCAM Vascular cell adhesion molecule

VLA Very late activation

VN Vitronectin

vWF von Willebrand factor

LIST OF TABLES

		Page
Table (1)	Cell adhesion molecules (Katz et al., 1991).	4
Table (2)	Kinetics of induction of ICAM-1 on keratinocytes from allergic patch test (Vejlsgaard et al., 1989).	29
Table (3):	Expression of ICAM-1 on keratinocytes from benign	
	cutaneous diseases (Vejlsgaard et al., 1989).	31

LIST OF FIGURES

		Page
Fig. (1):	General polypeptide structure of integrins.	5

Introduction and Aim of the Work

INTRODUCTION AND AIM OF THE WORK

Multicellular organisms require efficient mechanisms by which information can be transmitted between cells. In order to exchange information, cells interact in a variety of ways. Often intercellular communication is mediated by soluble factors. Such factors can regulate the transmission of information between cells situated close to each other or even between widely separated cells. A variety of cellular interaction, including some interactions of the immune system, require direct, intimate contact between cells (*Karz et al.*, 1991). Recently, a class of molecules collectively known as cell adhesion molecules, have been shown to be a principal mechanism of both cell-cell and cellmatrix interactions. Cell adhesion molecules are cell surface proteins possessing unique specificities that allow them to interact selectively with ligands. Such ligands may be other CAMs or matrix proteins.

Cell adhesion molecules can be broadly grouped into four distinct families: integrins, the immunoglobulin gene family, cadherins, and the more recently identified family of lectin-like glycoproteins (*Konter et al.*, 1989). Cell adhesion molecules are implicated in various pathologic conditions as systemic sclerosis, vitiligo, rhinovirus infection and

leukocyte adhesion deficiency disease. Cell adhesion molecules are important in the initiation and maintenance of inflammatory responses in allergic contact dermatitis, lichen planus, Pemphigus vulgaris and viral exanthema (*Vejlsgaard et al.*, 1989). Although no direct link between cell adhesion molecules and malignancy has been established, the ability of the immune system to destroy neoplastic cell is partly dependent on cytotoxic events that require CAMs for effector cell-target cell binding. CAMs may also play a role in the localization and behavior of neoplastic cell. Moreover, it has been suggested that CAMs are an important factor in determining the site-specificity of metastatic disease (*Zetter*, 1990).

The aim of this thesis is to spotlight on the structural and functional properties of the major cell adhesion molecules, as they pertain to immunoregulation and to describe how certain cell adhesion molecules are implicated in various malignancies, inflammatory dermatoses and other pathologic conditions.

Review of Literature

DEFINITION AND CLASSIFICATION

The attachment of cells to their surrounding is important in determining cell shape and in maintaining proper cell function and tissue integrity. Such binding positional signals that direct cellular traffic and differentiation. Most cells posses multiple mechanisms for binding to the structures that surround them. For example they can bind extracellular matrices or to other cells (*Ruoslahti and Pierschbacher*, 1987).

Cell adhesion molecules (CAMs) are cell surface proteins possessing unique specificities that allow them to interact selectively with ligands such ligands may be other CAMs or matrix proteins.

These molecules can be broadly grouped into four distinct families: integrins, the immunoglobulin-gene family cadherins, and more recently identified family of lectin-like glycoproteins (*Katz et al.*, 1991).