

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

THE EFFECT OF TIE BEAMS ON DIFFERENTIAL SETTLEMENT BETWEEN FOUNDATION AND CORRESPONDING STRAINING ACTION IN TIE BEAMS

BY

KHALED MAHMOUD AHMED MAHMOUD

46264

High diploma - Geotechnical Engineering-1990 B. Sc. Civil Engineering-1987 Ain Shams University

624.17723

A Thesis

Submitted in partial fulfillment for the Requirement of the degree of Master of Science

In Structural Engineering
Department of Structural Enginee

s span timent by the manner = \(\gamma \)

Supervised By

Dr. Eng. Farouk El-Kadi Prof. of Geotechnical Eng. Department of structural Eng. Faculty of Engineering, Ain Shams University. Dr. Eng. Ali bd El-Faffall
Assoc. Prof. of Georgehnical Eng.
Department of structural Eng.
Faculty of Engineering,
Ain Shams University.

Cairo - Egypt

1997

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Department of structural Engineering

APPROVAL SHEET

Khaled Mahmoud Ahmed Mahmoud

"The effect of tie beams on differential settlement between foundation and corresponding straining action in tie beams"

BY

Khaled Mahmoud Ahmed Mahmoud

APPROVED BY:

Prof. Dr. Abd El-Fattah Youssef

Professor of Geotechnical Engineering Department of structural Engineering Faculty of Engineering.

Monophia University.

Prof. Dr. Ahmed Abd El-Monaem Qurashey

Professor of Structural Engineering Department of structural Engineering Faculty of Engineering, Ain Shams University.

Prof. Dr. Eng. Farouk El-Kadi

Professor of Geotechnical Engineering Department of structural Engineering Faculty of Engineering, Ain Shams University

Dr. Eng. Ali Abd El-Fattah

Assoc. Professor of Geotechnical Engineering Department of structural Engineering Faculty of Engineering, Ain Shams University.

Date

Committee in charge

STATEMENT

This Thesis submitted to Ain Shams University for the degree of Master of science in Structural Engineering.

The work included in this thesis was carried out by author in the department of Structural engineering, Ain Shams University, From January 1994 till August 1997.

No part of this thesis has been submitted for a degree or a qualification.

Date : 1/9/1997 Signature :

Name : Khaled Mahmoud Ahmed

AIN SHAMS UNIVERSITY ACULTY OF ENGINEERING

Department of structural Engineering

Abstract of the Master of Science submitted by:

Khaled Mahmoud Ahmed Mahmoud

ile of Thesis: "The effect of tie beams on differential settlement between foundation

And corresponding straining action in tie beams"

Supervisors:

(1) Prof. Dr. Eng. Farouk El-Kadi.

(2) Dr. Eng. Ali Abd El-Fattah.

Registration Date:

15/1/1994

Examination Date:

Abstract

The work presented in this thesis is aimed to study the effect of rigidity of ground tie beams which connect foundation footings on the differential settlement between footings, and to calculate the straining actions in such beams.

The method of analysis was considerable as accurate, reliable as possible and easy for structural engineers to be applicable in the practical problems.

The models are chosen to examine the different factors which affect the analysis and relations have been established between them too.

The study of influence line of settlement was very important for the analysis, New sets of tables for influence line of settlement are established considering the dimensions of footings it self. The equations which model the I.L. are also examined, in addition to the effect of the constants of the equations on the B.M. in the beam and differential settlement between footings.

Many models have been examined to study the effect of the different parameters on the results, relationships have been established.

Keywords: Structural engineering, Geotechnical engineering, Soil structure interaction, Beam on elastic foundation, Influence line of settlement, Ground tie beams.

ACKNOWLEDGMENT

It is a pleasure to acknowledge the efforts of all those who have helped in completing this thesis.

I would like to express my deep gratitude and thanks to Prof. Dr.Eng. FAROUK EL-KADI, Professor of Geotechnical Engineering, Structural Engineering Department, Ain Shams University, for his simulating supervision, guidance and sincere efforts, which are reflected in much of the material of this thesis, and his helpful advice contributed significantly in creating research line for the author.

I am also thankful to Dr. ALY ABDELFATTAH, Associate Professor, Structural Engineering Department, Ain Shams University, for his advice and encouragement throughout this thesis.

Furthermore, I wish to express my special thanks and gratitude to Eng. EMAD EL-DARDIRY Assistant Lecturer, Structural Engineering Department, Zagazig University for preparing the computer programs developed in this thesis. As well as for contact encouragement, precious advice during the writing of this thesis, which truly helped in bringing this work to a successful end.

I shall be always grateful to my wife for her support and patient throughout the time of this study. My education would never have been possible without the continued encouragement and support of my Parents, I shall be always thankful to them.

TABLE OF CONTENTS

Abstract	III
Acknowledgment	IV
Table of contents	<i>V</i>
List of Tables	<i>VII</i>
List of Figures	VIII
1. INTRODUCTION	
1.1. General	1
1.2. Objective and scope	2
2. REVIEW OF PREVIOUS WORK	
2.1. General	4
2.2. Soil structure interaction of shallow foundations	5
2.2.1. Conventional analysis	5
2.2.2. Subgrade reaction theory	7
2.2.3. Elastic theory (Boussinesq's assumptions)	14
2.3. Influence line of settlement	22
2.3.1. Review of influence line of settlement	22
3. METHOD OF ANALYSIS	
3.1. Footings with equal length and breadth	35
3.2. Footings with equal length and variable breadth	44
3.3. The rigid case	47
4. INFLUENCE LINE OF SETTLEMENT	
4.1. Introduction	52
4.2. Study of influence line of settlement	
4.2.1. Kany's eqn	
122 Fl-Kadi's pan	56

4.3. Calculating I.L. of settlement using (Steinbrenner	
method) by footing dimensions	.60
4.4. Calculating C_o , C_l & C_2	62
4.5. Effect of ds/b' ratio on C_0 , C_1 & C_2 values	63
4.6. Simulating $C_{\mathfrak{o}}$, $C_{\mathfrak{i}}$ & $C_{\mathfrak{f}}$ values with an equation	63
4.7. Relationship between I.L. Coefficients for different	
footing dimensions	68
4.8. Applying Kany eqn. & El-Kadi eqn. For new I.L	.68
4.9. Effect of applying Kany eqn.&El-Kadi eqn.For new I.L	72
5. MODELS & PARAMETERIC STUDY	
5.1. Introduction	121
5.2. The effect of number of spans and spacing between	
footings	122
5.3. the effect of dimensions of footing	125
5.4. the effect of breadth of footing with a fixed a/b ratio	130
5.5. the effect of soil modules of elasticity	132
5.6. the effect of breadth of footings with a variable a/b	
ratio	34
5.7. the effect of changing edge load and edge footing	
dimensions	135
5.8. the effect of equal load per footing (Psm)	38
5.9. the effect of depth of compressible layer (ds)	139
5.10. the effect of increasing middle load and footing	
dimensions	41
S. SUMMARY AND CONCLUSIONS	
6.1. Summary	209
6.2. Conclusions2	?10
RFFFRFNCFS 2	?13

LIST OF TABLES

4-1	Suggested values of K1 and K2 for Kany Eqn	111
4-2	Runs summary for Kany Eqn.	113
4-3	Suggested values of K1 and K2 for El-Kadi Eqn	114
4-4	Runs summary for El-Kadi Eqn.	116
4-5	Suggested values of K1&K2 for Kany Eqn new I.L.	117
4-6	Runs summary for El-Kadi Eqn new I.L	118
4-7	Suggested values of K1&K2 for El-Kadi Eqn new 1.1	2119

LIST OF FIGURES

2-1 Rectilinear contact pressure distribution	2
2-2-a- The soil as infinite number of springs constant stiffness	20
2-2-b- The soil as infinite number of springs deferent stiffness \dots	26
2-3 Analysis of continuos beam on Winkler foundation	27
2-4 Cases of isolated footings connected with tie beam	28
2-5 Analysis based on Boussinesq's assumptions	29
2-6 Three moments equation method.	30
2-7 Deflection method	31
2-8 Illustration for theoretical and damped settlement	32
2-9 Influence line of settlement.	33
2-10 Influence line of settlement	34
3-I Model (2) 7 footings	49
3-2 Model (21) 7 footings	50
3-3 Rigid case	.51
4-1 Influence line of settlement	.74
4-2 Kany Eqn k2 values L/B	.75
4-3 Kany Eqn k2 values Ds/B'	.76
4-4 I.L. comparisons Ds/B'=3.0 , L/B=0.2	.77
4-5 I.L. comparisons Ds/B'=3.0 , L/B=0.5	.78
4-6 I.L. comparisons Ds/B'=3.0 , L/B=1.0	.79
4-7 I.L. comparisons Ds/B'=3.0 , L/B=2.0	.80
1-8 I.L. comparisons Ds/B'=3.0 , L/B=5.0	.8 <i>I</i>
1-9 I.L. comparisons Ds/B'=100.0 , L/B=0.2	.82
1-10 I.L. comparisons Ds/B'=100.0 , L/B=0.5	83