SITE ASSESSMENT FOR DISPOSAL OF LOW AND INTERMEDIATE LEVELS RADIOACTVE WASTES AT INSHAS AREA

A thesis

Submitted for the degree of doctor of philosophy
in
applied geophysics
to
Faculty of science-Ain Shams University

351, M. A

Ву

MOHAMED ABD EL-HALIM ABD EL-AZIZ M.Sc in Geophysics in 1992

Under the Supervision of

Prof. Dr. Ahmed S.A. Abu El-Ata Prof. of Geophysics, Geophysics Dept. Faculty of Science, Ain ShamsUniversity Prof. Dr Mohammed R.M. El-Sourougy
Prof. of Nuclear Chemical Engineering
Hot Labratory Center
Atomic Energy Authorit

59570

Cairo, 1996

ACKNOWLEDGMENT

First of all, I would like to express my deepest thanks to Prof. Dr. Hesham Fouad, Chairman of Atomic Energy Authority (AEA) for his interest in the point of research, facilitate and solving the problems of financial supports.

Also, the author would like to express his gratitude to Prof. Dr. Ibrahim El-Dakhly Abdel -Razek, Head of the Second Research Reactor, (AEA), for his financial support for conducting geophysical surveys and drilling program.

I would like to express my deepest gratitude and appreciation to my supervisor Prof. Dr. Ahmed Sayed Ahamed Abu El-Ata, Professor of Geophysics, Geophysics Department, Faculty of Science, Ain Shams University, for his good approaching for the plan of the work, unlimited help, fruitful discussion, close and useful supervision and reviewing the language and scientific material of all work.

The author is also greatly indebted to my supervisor, Prof. Dr. Mohamed Rashad Metwally El-Sourougy, Hot Lab. Center, (AEA), for his suggesting the point of the work, interest, fruitful discussion throughout the work.

special thanks are offered to Dr. Leonello Serva and his colleagues, Head of the Hydrogeological Parameters Branch, National Agency for Protection of Environment (ANPA), Rome, Italy for his follow me up and supervision on chapter V, concerning the tectonic and seismic hazard analysis, during my training in Italy.

Deep thanks to Prof. Dr. Mokhtar S.A.Hamza, Vice Chairman, Radiation Control Division, National Center for Nuclear Safety and Radiation Control, (AEA), for his help to overcome the problems that I met throughout the work.

I wish to express my thanks to Prof. Dr. Aly I. M. Aly, Head of the Siting and Environmental Department, National Center for Nuclear Safety and Radiological Control, (AEA), for his interest and continuous encouragement.

I am also indebted to Dr. Ahmed Sewedan, Projects Manager, General Geological Survey Authority and Mineral Resources, for facilitating the field work.

I would like to thank my colleagues Prof. Assist. Dr. Mostafa Awad and Dr. Mostafa Abdel Hamid Sadek, Dr. Mohamed Reda ,Siting and Environmental Department, (NCNSRC), for their sincere help in the chemical analysis and interpretation of the water samples.

Another thanks are directed to Dr. Sayed Aly El-mongy, Central lab., (NCNSRC), for his kind help in the radiological measurements and interpretation of soil, water and rock samples.

Finally, a special word of thanks to my wife for understanding the nature of my work and prepare a confortable and suitable environment until this thesis is brought forth to light.

CONTENTS

SUBJECT	PAGE NO
ACKNOWLEDGEMENT	
LIST OF CONTENTS	
LIST OF FIGURES	
LIST OF TABLES	
LIST OF PLATES	
ABSTRACT	
CHAPTER I: SITE CHARACTERISTICS	
I-1 INTRODUCTION	1
I-2 RADIOACTIVE WASTE	2
I-2-1 Definition of Radioactive Waste	
I-2-2 Sources of Radioactive Wastes	
I-3 DISPOSAL	4
I-3-1 Definition of Disposal	
I-3-2 Wase Categories and Disposal System	
I-3-3 Shallow Ground Disposal	
I-3-4 Main Disposal Objectives	
I-4 GUIDANCE AND CRITERIA FOR SITE SELECTION PROCE	SS 7
I-4-1 Geography and Demography	
I-4-2 Ecology	
I-4-3 Meteorology	
I-4-4 Geology	
I-4-5 Hydrogeology	
I-4-6 Geochemistry	
I-4-7 Tectonic and Seismicity	
I-4-8 Radiological Characteristics	
I-4-9 Geotechnical properties	
CHAPTER II: PHYSICAL SETTING	
II-1 INTRODUCTION	12
II-2 SITE LOCATION AND SITE CHARACTERISTICS	12
II-3 POPULATION DISTRIBUTION	13
II-4 NATURAL ENVIRONMENT LAND AND WATER USAGE	13
II-5 NEARBY INDUSTRIES, TRANSPORT AND MILITARY	17
FACILITIES	
II-5-1 Nearby Industrial Facilities	
II-5-2 Nearby Military Facilities	
II-5-3 Nearby Transport Facilities	
II-6 RADIOLOGICAL IMPACT	17
II-7 METEOROLOGY	17
II-8 ADAPTABILITY OF THE PHYSICAL SETTING FOR SITE	18
LOCATION	
CHAPTER III: GENERAL GEOLOGIC SETTING	
HI I INTRODUCTION	20

	20
III-2 REGIONAL GEOLOGY	
III-2-1 Stratigraphy	
III-2-2 Regional Structure Geology	31
III-3 NEAR SITE GEOLOGY	
III-3-1 Geomorphology	
III-3-2 Stratigraphy	
III-3-3 Near Site Structure Geology	40
III-4 SITE GEOLOGY	10
III-4-1 Geomorphological Aspects	
III-4-2 Stratigraphical Aspects	
III-4-3 Structural Aspects	64
III-5 ADAPTABILITY OF THE GEOLOGY FOR SITE LOCATION	01
CHAPTER IV: TOTAL INTENSITY MAGNETIC	60
IV-1 INTRODUCTION	69
IV-2 MAGNETIC SURVEY	69
IV-3 MAGNETIC DATA	69 7 0
IV A DIGITIZATION	70
IV-5 REDUCTION TO THE POLE MAGNETIC TECHNIQUE	70
IV-5-1 The Concept of the Reduction to the Pole	
Tax 5.0 A multipation of the Reduction to the Pole	70
IV-5-2 Application of the Reduced to STATE REDUCED TO	73
THE POLE MAP	
IV.6.1 Magnetic Senaration	
To 6.2 Possite of the Application of Griffin's Technique	===
IV-0-2 RESULTS OF THE APPRICATION OF THE MAGNETIC	78
DATA	
IV-7-1 Spectral Analysis Method	
TV 7-2 Application of the Spectral Analysis Technique	
IV-8 ADAPTABILITY OF THE STRUCTURE FOR SITE	83
LOCATION	
CHAPTER V: TECTONIC AND EARTHAQUE HAZARD	
V 1 INTRODUCTION	91
V-2 REQUIRED INFORMATION AND INVESTIGATION	92
V-2-1 Regional Scale data	
V-2-2 Near Region Investigation	
V-2-3 Site Vicinity Investigation	
V-2-4 Site Detailing	
V-2-5 Historical Earthquake Data	
V-2-6 Instrumental Earthquake Data	
V-2-7 Paleoseismological Data	
V-3 NEO-TECTONIC OF EGYPT	93
V-4 THE METHODS USED IN SEISMIC HAZARD ANALYSIS	102
V-4-1 Deterministic Seismic Hazard Analysis	
V-4-2 Probabilistic Seismic Hazard Analysis	
V-5 APPLICATION OF DETERMINISTIC METHOD	109
V-5-1 Input and Issues	
V-6 APPLICATION OF PROBABILISTIC METHOD	119

V-6-1 Application of Gutenberg-Richter Relationship		
V-6-2 Application of the Extreme Value Approach		
V-6-3 Application of the Analytical Method		
V-7 ADAPTABILITY OF THE SEISMICITY FOR SITE LOCATIO	N 148	
CHAPTER VI: SHALLOW SEISMIC REFRACTION		
VI-1 INTRODUCTION	149	
VI-2 PROFILE LAYOUT	149	
VI-3 INSTRUMENTION	150)
VI-4 GENERATION OF SEISMIC WAVES	150	
VI-4-1 Longitudinal Waves (P-Waves)		
VI-4-2 Transverse Waves (S-Waves)		
VI-5 DATA ANALYSIS	153	
VI-5-1 Mathematical Analysis for Three Dipping Layers		
VI-6 RESULTS AND INTERPRETATION	158	3
VI-6-1 Profile I		
VI-6-2 Profile II		
VI-6-3 Profile III		
VI-7 DETERMINATION OF COMPETENCE PARAMETERS OF	173	
FOUNDATION MATERIAL		
VI-7-1 Elastic Moduli		
VI-7-2 Standard Penetration Test		
VI-7-3 Material Competence Scale		
VI-7-4 Foundation Material Bearing Capacity		
VI-8 RESULTS OF THE DETERMINATION OF COMPETENCE	178	
PARAMETERS OF THE SURFACE LAYER IN THE SITE		
DETAILING AREA		
VI-8-1 Physical Parameters		
VI-8-2 Elastic Moduli		
VI-8-3 Standard Penetration Test (N-Value)		
VI-8-4 Material Competence Scale	186	
VI-9 GEO-SEISMIC CROSS SECTION	100	,
VI-9-1 Geo-seismic Cross Section along Profile F-F'F"		
VI-9-2 Geo-seismic Cross Section along Profile G-GG"		
VI-9-3 Geo-seismic Cross Section along Profile H-H'H" VI-10 LABRATORY TESTING FOR PHYSICAL AND MECHAN	ICAT 1	104
	ICAL I	177
PROPERTIES VI-11 ADAPTABILITY OF THE PHYSICAL AND GEOTECHNIC	CAT	203
PROPERTIES OF HOST ROCK FOR SITE LOCATION		203
PROPERTIES OF HOST ROCK FOR SITE LOCATION		
CHAPTER VII: ELECTRICAL RESISTIVITY		
VII-1 INTRODUCTION		204
VII-2 PRINCIPALS OF RESISTIVITY METHODS	D.T.C	204
VII-3 ELECTRODE ARRANGEMENTS AND FIELD PROCEDUI	KES	207
VII-3-1 Wenner Arrangement		
VII-3-2 Schlumberger Array		
VII-3-3 Dipole-Dipole Array		
VII-3-4 Pole-Dipole Array		200
VII-4 FIELD WORK		209

VII-5 INTERPRETATION OF FIELD DATA	210
VII-5-1 Qualitative Interpretation of Field Data	
VII-5-2 Quantitative Interpretation of Field Data	
VII-6 RESULTS OF THE QUANTITATIVE INTERPRETATION	229
VII-6-1 Geo-electric Cross Section	
VII-7 ADAPTABILITY OF THE RESULTS OF ELECTICAL	250
SURVEY FOR SITE LOCATION	
CHAPTER VIII: HYDROGEOLOGICAL AND HYDROCHEMICAL	
ANALYSIS	
VIII-1 INTRODUCTION	251
VIII-2 REGIONAL HYDROGEOLOGY OF INSHAS AREA	252
VIII-2-1 Source of Groundwater	
VIII-2-2 Groundwater Occurrences	
VIII-2-3 Natural Discharge Area	
VIII-2-4 Direction of Groundwater Flow	
VIII-2-5 Estimates of Groundwater Velocity	
VIII-3 NEAR SITE HYDROGEOLOGY	253
VIII-3-1 Groundwater Occurrence	
VIII-3-2 Direction of Groundwater Flow	261
VIII-4 HYDROCHEMICAL ANALYSIS	
VIII-4-1 Sample collection	
VIII-4-2 Results and Discussion	
VIII-5 ADAPTABILITY OF HUDROGEOLOGY AND HYDRO-	267
CHEMISTRY FOR SITE LOCATION	
CHAPTER IX: NATURAL RADIOACTIVITY MEASUREMENTS	
IX-1 INTRODUCTION	273
IX-2 INSTRUMENTATION	273
IX-2-1 Specification of the System	
IX-3 METHODS OF SAMPLING	273
IX-3-1 Soil Sampling	
IX-3-2 Water Sampling	
IX-4 SAMPLING COLLECTION AND SAMPLING PREPARATION	275
IX-5 CALCULATION	276
IX-6 INTERPRETATION	277
IX-7 ADAPTABILITY OF THE RADIOLOGICAL	279
MEASUREMENTS	
X- SUMMARY & CONCLUSION	280
REFERENCES	290
APPENDICES	
ARABIC SUMMARY	

LIST OF TABLES

TAI	B. NO. DESCRIPTION	PAGE NO.
1	SETTLEMENT DISTRIBUTION AT REACTOR SIT	E. 14
2	TRANSIENT POPULATION AT REATCOR SITE.	15
3	DEPTH DETERMINATION OF MAGNETIC ANOM USING SPECTRAL ANALYSIS METHOD (1971)	IALIES. 85
4	MEAN CUMMULATIVE ANNUAL RATES OF EARTHQUAKE, FOR A GIVEN MAGNITUDE AND TIME FOR SOURCE I.	112
5	UNCORRECTED CUMMULATIVE ANNUAL RATE SOURCE I	ES FOR 113
6	CORRECTED CUMMULATIVE ANNUAL RATES F SOURCE I.	FOR 113
7	MEAN CUMMULATIVE ANNUAL RATES OF EARTHQUAKE, FOR A GIVEN MAGNITUDE AND TIME FOR SOURCE II.	116
8	UNCORRECTED CUMMULATIVE ANNUAL RATI	ES FOR 117
9	CORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE II.	117
10	MEAN CUMMULATIVE ANNUAL RATES OF EARTHQUAKE FOR A GIVEN MAGNITUDE AND TIME FOR SOURCE III.	120

11	UNCORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE III.	121
12	CORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE III.	121
13	MEAN CUMMULATIVE ANNUAL RATES OF EARTHQUAKE FOR GIVEN MAGNITUDE AND TIME FOR SOURCE IV.	123
14	UNCORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE IV.	124
15	CORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE IV.	124
16	MEAN CUMMULATIVE ANNUAL RATES OF EARTHQUAKE FOR A GIVEN MAGNITUDE AND TIME FOR SOURCE V.	126
17	UNCORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE V.	126
18	CORRECTED CUMMULATIVE ANNUAL RATES FOR SOURCE V.	126
19	FREQUENCY OF EARTHQUAKES OCCURRING IN SOURCE I.	128
20	FREQUENCY OF EARTHQUAKES OCCURRING IN SOURCE II.	128
21	FREQUENCY OF EARTHQUAKES OCCURRING IN SOURCE III.	128
22	FREQUENCY OF EARTHQUAKES OCCURRING IN SOURCE IV.	128
23	FREQUENCY OF EARTHQUAKES OCCURRING IN SOURCE V.	128
24	MOST PROBABLE MAGNITUDE USING THIRD GUMBEL	134

25	FILTRATION VELOCITIES AT DIFFERENT LOCATIONS ALONG ISMAILIA CANAL (AFTER HAMZA <u>ET AL</u> , 1988).	254
26	TOTAL SEEPAGE FROM ISMAILIA CANAL CALCULATED FROM RADIOACTIVE TRACER AND DARCY,S METHOD (AFTER HAMZA <u>ET AL.</u> , 1988).	255
27	CHEMICAL COMPOSITION OF THE INVESTIGATED WELLS IN THE STUDY AREA.	263
28	HYPOTHETICAL SALT COMBINATIONS.	266
29	THE RADIONUCLIDE CONTENT OF WATER. SAMPLES (BQ/L)	278
30	THE RADIONUCLIDE CONTENT OF SOIL. SAMPLES (BQ\L)	278
31	THE RADIONUCLIDE CONTENT OF ROCK SAMPLE (BQ\L).	278

LIST OF FIGURES

FIG NO.	DESCRIPTION	Page	no
(FIG. 1). POPULA	ATION DISTRIBUTION AROUND THE REACTOR SITE (AFTER INVAP, 1993)	16	
(FIG. 2). KEY MA	AP OF INSHAS SITE	21	
(FIG. 3). STRATI	IGRAPHY OF SIDI SALEM WELL NO.1, NILE DELTA, EGYF (AFTER IEOC, 1970)	T 23	
	ONMENTS OF DEPOSITION OF MIDDLE MIOCENE SEDIMENTS IN NORTHERN EGYPT R OUDA, 1971; AND EL-SHAZLY <u>ET</u> <u>AL</u> ., 1975b.)	26	
(FIG. 5). ENVIRO	ONMENTS OF DEPOSITION OF OLIGOCENE SEDIMENTS II RTHERN EGYPT (AFTER MARZOUK, 1970)	N 27	
(FIG. 6). LOCAT	ION MAP OF THE NILE DELTA SHOWING THE SITES OF DRILLED WELLS (AFTER SHAABAN, 1983)	29	
(FIG. 7). PHYSIC	OGRAPHIC MAP OF THE AREA EAST OF THE NILE DELTA (AFTER EL-SHAZLY <u>ET AL.,</u> 1962)	33	
(FIG. 8). INDEX DRIL	MAP OF INSHAS SITE SHOWING THE LOCATION OF FIVE LHOLES (AFTER EL-SHAZLY <u>ET</u> <u>AL</u> ., 1982)	36	
(FIG. 9). RESTO	RTED DIAGRAM OF INSHAS SITE ER EL-SHAZLY <u>EL AL</u> ., 1982)	36	,
(FIG. 10). INTER	RPRETATION OF REGIONAL MAGNETIC COMPONENT MA T 270 M LEVEL, INSHAS AREA (AFTER MNA, 1991)	AP 37	•
(FIG. 11). VES L GEO-	OCATION MAP OF THE STUDY AREA SHOWING THE ELECTRIC CROSS SECTIONS (AFTER DRC, 1991)	38	3
(FIG. 12). GEO-	ELECTRIC CROSS SECTION ALONG PROFILE A-A' (AFTER DRC, 1991)	39)
(FIG. 13). GEO-	ELECTRIC CROSS SECTION ALONG PROFILE B-B' (AFTER DRC, 1991)	4]	L
(FIG. 14). STRU	ICTURE CONTOUR MAP FOR THE UPPER SURFACE OF BASALT (AFTER DRC, 1993)	42	2
(FIG. 15). BLOC	CK DIAGRAM FOR THE UPPER SURFACE OF BASALT (AFTER DRC, 1993)	41	3

(FIG. 16). LOCATION MAP OF THE STUDY AREA SHOWING THE DISTRIBUTIONS OF VERTICAL ELECTRICAL SOUNDINGS, BOREHOLES AND SEISMIC REFRACTION PROFILES	44
(FIG. 17). TOPOGRAPHIC MAP OF THE STUDY AREA	46
(FIG.18). RELIEF MAP OF CLAY LAYER.	62
(FIG. 19). ISOPACH MAP OF CLAY LAYER.	63
(FIG. 20). GEOLOGIC CROSS SECTION ALONG PROFILE C-C'	65
(FIG. 21). GEOLOGIC CROSS SECTION ALONG PROFILE D-D'	66
(FIG. 22). GEOLOGIC CROSS SECTION ALONG PROFILE E-E'	67
(FIG. 23). TOTAL INTENSITY MAGNETIC MAP OF THE STUDYAREA	71
(FIG. 24). EFFECT OF CHANGE IN MAGNETIC LATITUDE ON THE FORM OF ANOMALY IN TOTAL MAGNETIC INTENSITY OF A SPHERE (AFTER NETTLETON, 1962)	72
(FIG. 25). TOTAL INTENSITY MAGNETIC MAP REDUCED TO THE POLE OF THE STUDY AREA	74
(FIG. 26). REGIONAL ANOMALIES OF THE TOTAL INTENSITY MAP REDUCED TO THE POLE USING GRIFFIN'S METHOD	77
(FIG.27). RESIDUAL ANOMALIES OF THE TOTAL INTENSITY MAP REDUCED TO THE POLE USING GRIFFIN'S METHOD	79
(FIG. 28). LOCATION MAP FOR THE MAGNETIC PROFILES USED FOR BASEMENT DEPTH DETERMINATION	82
(FIG. 29). MAGNETIC SPRCTRAL ANALYSIS ALONG PROFILE 14-14	84
(FIG. 30). NEAR-SURFACE RELIEF MAP, BASED ON MAGNETIC SPECTRAL ANALYSIS	86
(FIG. 31). BLOCK DIAGRAM FOR THE UPPER SURFACE OF BASALT BASED ON MAGNETIC SPECTRAL ANALYSIS	87
(FIG. 32). BASEMENT RELIEF MAP, BASED ON MAGNETIC SPECTRAL ANALYSIS	88

(FIG. 33). BLOCK DIAGRAM FOR THE UPPER SURFACE OF BASEMENT, BASED ON MAGNETIC SPECTRAL ANALYSIS	89
(FIG. 34). TECTONIC MAP OF EGYPT (AFTER YOUSSIF, 1968)	95
(FIG. 35). SEISMO-TECTONIC MAP OF EGYPT (AFTER MAAMOUN, 1976)	96
(FIG. 36). TRENDS OF REGIONAL TECTONIC DEFORMATIONS (AFIER ABU EL-ATA, 1988)	99
(FIG. 37). TRENDS OF REGIONAL TECTONIC STRESSES (AFTER ABU EL-ATA, 1988)	99
(FIG. 38). EPICENTRAL DISTRIBUTION OF EARTHQUAKES FOCAL MECHANISMS OF PRINCIPAL EARTHQUAKES AND ACTIVE SEISMIC TRENDS (AFTER KEBEASY, 1990)	100
(FIG. 39). BASIC STEPS OF DETERMINISTIC SEISMIC HAZARD ANALYSIS (AFTER TERA CORPORATION, 1978)	103
(FIG. 40). FAULT RUPTURE LENGTH-MAGNITUDE RELATIONSHIP (AFTER DE POLO AND SLEMMONS, 1991)	105
(FIG. 41). A MAP SHOWING THE DISTRIBUTION OF THE EPICENTERS OF EARTHQUAKES FROM 1901 TO 1993 AND THE PROPOSED SEIS-MOTECTONIC SOURCES	110
(FIG. 42). MAGNITUDE-RECURRENCE RELATIONSHIPS FOR SOURCE I	111
(FIG. 43). MAGNITUDE-RECURRENCE RELATIONSHIPS FOR SOURCE II	115
(FIG. 44). MAGNITUDE-RECURRENCE RELATIONSHIPS FOR SOURCE III	118
(FIG. 44). MAGNITUDE-RECURRENCE RELATIONSHIPS FOR SOURCE IV	122
(FIG. 46). MAGNITUDE-RECURRENCE RELATIONSHIPS FOR SOURCE V	125
(FIG. 47). THE BEST NON-LINEAR LEAST SQUARES FOR THE THIRD GUMBEL APPROACH	132
(FIG. 48). LINE SOURCE	135
(FIG. 49). ANNULAR SOURCES, PERSPECTIVE	138
(FIG. 50). UNSYMMETRICAL SOURCES	141
(FIG. 51). NUMERICAL VALUES OF INTEGRAL IN EQUATION 32	142
(FIG. 52). INTENSITY-RETURN PERIOD RELATIONSHIP AT INSHAS SITE	. 144

(FIG. 53). SEISMIC HAZAED CURVE AT INSHAS SITE, TAKING INTO CONSIDERATION THE FAYUM SEISMO-TECTONIC SOURCE ZONE AS A CAPABLE FAULT	146
(FIG. 54). SEISMIC HAZARD CURVE AT INSHAS SITE DUE TO THE INCORPORATION OF THE EFFECTS OF ALL SEISMO-TECTONIC SOURCE ZONES	147
(FIG. 55). CHARACTERISTICS OF P-WAVES	151
(FIG. 56). CHARACTERISTICS OF S-WAVES	151
(FIG. 57). REFRACTED WAVE ACROSS INTERFACE (SNELL'S LAW)	
(FIG. 58). DIPPING THREE-LAYERS STRUCTURES	154
(FIG. 59). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S1-SIR	155 159
(FIG. 60). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S2-S2R	160
(FIG. 61). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S3-S3R	161
(FIG. 62). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S4-S4R	162
(FIG. 63). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S5-S5R	164
(FIG. 64). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S6-S6R	165
(FIG. 65). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S7-S7R	167
(FIG. 66). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S8-S8R	168
(FIG. 67). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S9-S9R	170
(FIG. 68). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S10-S10R	171
(FIG. 69). TRAVEL TIME CURVE AND THE CORRESPONDING GEOLOGIC CROSS SECTION ALONG SPREAD S11-S11R	172