DIAGNOSIS OF PRIMARY POSTERIOR FOSSA TUMOURS IN THE PEDIATRIC AGE GROUP BY CT AND MRI

THESIS

Submitted for partial fulfillment of M.D. (Radiodiagnosis)

By Karima Moustafa Maher

M.B., B.Ch., and M.Sc. Faculty of Medicine

Ain Shams University

SUPERVISORS

Prof. Dr. Jannette Boushra Hanna

Professor of Radiodiagnosis
Faculty of Medicine
Ain Shams University

Prof. Dr. Marvin D. Nelson

Associate Professor of Radiology U.S.C. School of Medicine Director of Neuroimaging Childrens Hospital Los Angeles

1997

و مرست سری ما عدارس

Central Library - Ain Shams University

CONTENTS

						Page
1)	Introduction and Aim of the Work	-	-			1
2)	CT and MR Anatomy of the Posterio Cranial Fossa	or -	~		_	3
3)	Pathology of Primary Posterior Fossa Tumours	-	_		_	46
4)	Review of Literature	-		- -	-	80
5)	Physics and Technique of MRI	-			-	85
6)	Material and Methods	_			-	100
7)	Results				_	108
8)	Discussion			-	-	195
9)	Illustrative Cases			-	-	230
10)	Summary and Conclusion			-	_	284
11)	References		-	-	_	290
12)	Arabic Summary		_	_	_	307

List of Diagrams

	page
Diagram 1-2:Embryology of the brain	3
Diagram 3-5:Origin of cranial nerves	9,11
Diagram 6-9:Spinal tracts	15,17
Diagram 10: "	22
Diagram 11:cerebellar lobes	26
Diagram 17-19:vacular-anatomy	38,44
Diagram 20: Dermoids with sinus tracts	66
Diagram 21-28: MRI-physics	85-95

List of Figures	Page
Fig.1-9: MR-anatomy	
Fig. 10-15:CT-antomy	5-30
Fig. 16-18: vascular-anatomy	3-37
Fig. 19a-b-c:PNET	40-45
Fig. 20a-b-c: "	230
Fig.21a-b "	232
Fig. 22a-b "	234
Fig.23a-b-c: "	236
Fig. 24a-b: "	238
Fig. 25a-b-c:Pilocytic	240
Astrocytoma	242
Fig.26a-b-c: "	
Fig. 27a-b-c: "	244
Fig. 28a-b-c:Astrocytoma	246
Fig. 29a-b: Anaplastic-"	248
Fig. 30a-b: " "	250
Fig.31a-b-c: "	252
Fig.32a-b:Brainstem	254
glioma	256
Fig. 33a-b-c: "	
Fig.34a-b-c:Ependymoma	258
Fig. 35a-b-c: "	260
Fig.36a-b-c-d:Dermoid	262
Fig.37a-b-c-d: "	264
Fig. 38a-b-c-d: AVM	266
Fig.39a-b-c: "	268
Fig. 40a-b-c: Abscess	270
Fig. 41a-b-c: "	272
Fig.42a-b-c:Teratoma	274
Fig. 43a-b-c:	276
Hemangioendothelioma	
F1g.44a-b-c-d:	278
choroid plexus papilloma	
F-F () Omu	280
Fig.45a-b-c-d-e:chordoma	
	282

List Of Tables

	Page
Table 1: Classification of	
infratentorial childhood brain tumours	50
Table 2: Number of patients and	
sex destribution	108
Table 3: Death tole	108
Table 4: Age and sex of presentation	109
Table 5: symptomatology and presentation	110
Table 6 - 13: Results of PNET	113-125
Table 14 - 20: Results of Plain Astrocytomas	126-134
Table 21 - 27: Results of Anaplastic	
Astrocytomas	135-142
Table 28 - 35: Results of Pilocytic Astrocytoma	s 143-152
Table 36 - 41: Results of Brainstem Gliomas	153-160
Table 36 - 41: Results of Foundymomas	161-169
Table 42 - 48: Results of Ependymomas	170-174
Table 49 - 53: Results of Dermoids	175-178
Table 54 - 57: Results of AVMs	179-181
Table 58 - 60: Results of abscesses	182-185
Table 61 - 64: Results of teratoma	. 4
Table 65 - 66: Results of Hemangioendothelioma	188/9
Table 67 - 68: Results of Choroid Plexus	
Papilloma	a 190/1
Table 69 - 70: Results of chordoma	190/1
Table 71: pathological diagnoses	-
Table 72: average sizes of different tumours	194

THANK YOU!!!!

TO MY BELOVED HUSBAND

AND MY CHILDREN

WHO MEAN MORE THAN EVERYTHING TO ME

ACKNOWLEDGEMENT

I would hereby like to express my deepest gratitude and appreciation to the sincere efforts of Professor Dr. **Jannette Boushra Hanna**, Professor of Radiodiagnosis, Ain Shams University. Her continuous guidance, long hours of work, important advice and significant contributions were essential for the thesis to come out in this form.

I want to express my deepest appreciation to Dr. **Marvin D.Nelson**, M.D. for regarding me as one of his team, and thank him for the long hours he has devoted to this work, the detailed analysis of all the cases, his precious advice, important contributions and his never ending support.

I am very grateful to all members and staff of the Radiology Department at **CHILDREN'S HOSPITAL LOS ANGELES**, as well as Dr.Floyd Gilles, M.D. and Hervey D.Segall, M.D. for their encouragement and contributions.

I would also like to express my thanks and gratitude to Professor Dr. **Zeinab Abdallah**, Professor of Radiodiagnosis and Head of the Radiology department at the Ain Shams University, and to all my collegues and friends that helped me.

I will always remain in deep debt to my mother and father for their never-ending support and help.

ABSTRACT

We performed our study on 58 children (35 males and 23 females), between the ages of 3 months - 17 different pathological diagnoses 13 encountered. We compared CT and MRI findings in all cases. Our study included 23 cases of PNET (Medulloblastoma), 6 cases of pilocytic astrocytomas, 3 cases of anaplastic astrocytomas, 4 cases of plain astrocytomas, 8 cases of brainstem gliomas, 5 cases of ependymomas, 2 cases of dermoid tumours, 2 cases with A-V malformations, 2 abscesses, one case of each: teratoma, hemangioendothelioma, choroid plexus papilloma, and chordoma. 20 of these patients died during the course of the study (22 months). All cases were investigated by a CT- scan of the head, followed by MRI of the brain without and with IV Gd-DTPA. CT and MR are equally good in diagnosing the different degrees of hydrocephalus and in size estimation. CT is better in detection of tumour calcifications. MR proved be markedly advanced regarding to estimation of tumour related oedema, definition and extension of the tumour, especially if it extends into the foramen magnum and upper cervical cord. CT can detect tumoural hemorrhage, but MR is much more specific in defining the different components and age of hemorrhage. From the above mentioned facts we come to the conclusion that the although too costly for using in routine screening, it can noninvasively obtain informations that only multiple modalities and invasive procedures could previously obtain, especially in posterior fossa tumours.

Central Library - Ain Shams University

INTRODUCTION AND AIM OF THE WORK