A STUDY ON THE HAEMATOLOGIC EFFECTS OF EXPOSURE TO ELECTROMAGNETIC FIELDS

THESIS

Submitted In Partial Fulfillment For The Degree Of M.D.
(PHYSIOLOGY)

BY Bataa Mohamed Ali El-Kafoury

63890

SUPERVISED BY

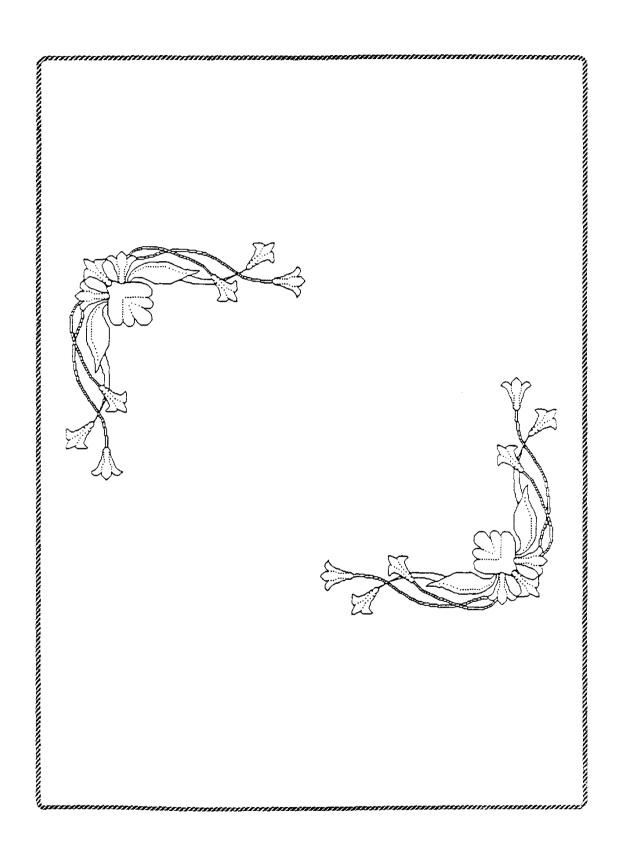
Professor Dr. Fatma Ahmed Mohamed

B. M

Professor Of Physiology Faculty Of Medicine Ain-Shams University

Dr.Afaf Ahmed Mohamed

Assist. Professor Of Physiology Faculty Of Medicine Ain-Shams University


Dr. Ebtessam A. Abou Shady

Assist. Professor Of Physiology Faculty OF Medicine Ain-Shams University

Hanaa El-Tayeb Nasser

Assist. Professor Of Biochemistry Faculty Of Medicine Ain-Shams University

> Physiology Department Faculty Of Medicine Ain-Shams University 1996

ACKNOWLEDGMENT

Deepest appreciation and everlasting gratitude to **Professor Dr. AHMED MOHAMED KAMEL**, Head of Physiology Department, for his help and support in solving the problems met with throughout the entire work.

I am profoundly grateful to **Professor Dr. FATMA AHMED MOHAMED**, for initiating, suggesting and planning this study and for her generous close supervision, continuous direction and encouragement throughout this study.

I owe special thanks and gratitude to **Dr. AFAF AHMED MOHAMED**, Assist. Professor of Physiology, for her valuable direction and generous assistance throughout the whole work.

I am also indebted to **Dr. EBTESSAM AHMED ABOU SHADY**, Assist.Professor of Physiology, for her tremendous help and faithful advise all through this study.

I wish to express my cordial appreciation to **Dr.HANAA EL-TAYEB NASSER**, Assist.Professor of Biochemistry, for her valuable help and generous cooperation.

I am also deeply grateful to **Dr.NAHLA M. ZAKARIA**, Lecturer of Clinical Pathology, for her help and cooperation.

Finally, I would like to thank all members of Physiology Department as well as **Dr.ALI KHALIFA** and members in his Laboratory, for their interest and cooperation.

List of Abbreviations

-AC : Alternating current .

-CFU-blast : Colony forming unit, blast (pleuripotential stem cell)

-CFU-GEMM : Colony forming unit-granulocyte, stem cell erythrocyte,

macrophage, megakaryocyte (myloid multipotential

stem cells).

-ELFs : Extremely low frequency field.

-EMF : Electromagnetic field.

-Gauss : Unit of measuring magnetic field intensity .

-GHZ : Giga hertz i.e 109 (thousand-million hertz).

-GM-CFU : Granulocyte , monocyte-colony forming unit (granulocyte-

monocyte progenitor).

-HZ : Unit of measuring the frequency.

-KHz : Kilo hertz i.e 10³ (thousand-hertz).

-MF : Magnetic field .

-MHz : Mega hertz i.e 10⁶ (one million hertz).

-NIR : Non ionizing radiation .

-PEMF : Pulsed electromagnetic field .

-RF : Radio frequency .

-SAR : Specific absorption rate i.e amount of energy in watt that

can be absorbed by one Kg body weight.

-Tesla : 1/1000 Gauss (unit of magnetic field intensity).

-THz : Tera hertz i.e 10¹² (billion hertz).

-UVR : Ultraviolet rays .

-VDT : Video display terminal .

-W/cm² : Power density i.e radiation power per unit surface area(unit).

-W/Kg : Specific absorption rate (unit).

List of Tables

*Table (1)	: Summary of scheme of work .
*Table (2)	: RBCs parameters of normal control rats .
*Table (3-6)	: RBCs parameters of rats exposed 2 months 4h/d.
*Table (7-10)	: RBCs parameters of rats exposed 2 months 8h/d.
*Table (11-14)	: RBCs parameters of rats exposed 4 months 4h/d.
*Table (15-18)	: RBCs parameters of rats exposed 6 months 4h/d.
*Table (19-26)	: Cumulative tables for RBCs parameters .
*Table (27a,b)	: Leucocyte parameters of normal control rats .
*Table (28-31)	: Leucocyte parameters of rats exposed 2 months 4h/d.
*Table (32-35)	: Leucocyte parameters of rats exposed 2 months 8h/d.
*Table (36-39)	: Leucocyte parameters of rats exposed 4 months 4h/d.
*Table (40-43)	: Leucocyte parameters of rats exposed 6 months 4h/d.
*Table (44-51)	: Cumulative tables for leucocyte parameters .
*Table (52)	: Haemostatic parameters of normal control rats .
*Table (53-56)	: Haemostatic parameters of rats exposed 2 months 4h/d.
*Table (57-60)	: Haemostatic parameters of rats exposed 2 months 8h/d.
*Table (61-64)	: Haemostatic parameters of rats exposed 4 months 4h/d.
*Table (65-68)	: Haemostatic parameters of rats exposed 6 months 4h/d.
*Table (69-76)	: Cumulative tables for haemostatic parameters .
*Table (77)	: Protein C level in rats exposed 4h/d for 4 months.
*Table (78)	: Plasma protein levels in normal control rats .
*Table (79-82)	: Plasma protein levels in rats exposed 2 months 4h/d.
*Table (83-86)	: Plasma protein levels in rats exposed 2 months 8h/d.
*Table (87-90)	: Plasma protein levels in rats exposed 4 months 4h/d.
*Table (91-94)	: Plasma protein levels in rats exposed 6 months 4h/d.
*Table (95-102)	: Cumulative tables for plasma protein levels .

List of Figures

		Page
*Fig.(1)	:Electromagnetic spectrum.	6
*Fig.(2)	:Changes in erythrocyte count (X106 / mm ³) following exposure.	198
*Fig.(3)	:Changes in total WBCs count (X10 ³ / mm ³) following exposure.	199
*Fig.(4)	:Changes in lymphocyte count (%) following exposure .	200
*Fig.(5)	:Changes in neutrophil count (%) following exposure .	201
*Fig.(6)	:Changes in phagocytic activity(%) of neutrophil following exposure .	202
*Fig.(7a-b)	:Neutrophil phagocytic and lytic activities in normal control rats, showing (1)-living candida, inside the neutrophil, stained blue with Leishman's stain, (2)-Dead candida inside the cell, not taking the stain (i.e unstained) (resembling ghost image) (X 100).	203
*Fig.(8a-b)	Example of reduced neutrophil phagocytic activity (rats exposed for 4 months), showing living candida (stained blue), scattered in the film but not engulfed by the cells (N = neutrophil, C = candida) (X 100).	204
*Fig.(9)	:An example of diminished neutrophil lytic activity (rats exposed for 2 months), showing blue-stained living candida and no ghost image (X 100).	205
*Fig.(10)	:Changes in platelet count (X 10 ³ / mm ³) following exposure.	206
*Fig.(11)	:Changes in platelet aggregation (%) following exposure .	207

*Fig.(12)	:Platelet aggregation curve of rats exposed 4hours/day for 4 months (group B : Rats located	208
	60 cm infront of TV set).	
*Fig.(13)	:Platelet aggregation curve of rats exposed	209
- ·g·(1-)	4hours/day for 4 months (group C : Rats located	_ 0 2
	30 cm behind the TV set).	
*Fig.(14)	:Platelet aggregation curve of rats exposed	210
3()	4hours/day for 6 months (group A : Rats located	
	30 cm infront of the TV set).	
*Fig.(15)	:Changes in recalcification time (RT) following	211
- , ,	exposure.	
*Fig.(16)	:Changes in partial thromboplastin time (PTT)	212
	following exposure .	
*Fig.(17)	:Changes in prothrombin time (PT) following	213
	exposure.	
*Fig.(18)	:Changes in thrombin time (TT) following	214
	exposure .	
*Fig.(19)	:Changes in FDP levels (ng/ml) following	215
	exposure.	
*Fig.(20)	:Changes in protein C activity (%) following	216
	exposure .	217
*Fig.(21)	:Changes in total plasma proteins (gm%)	
	following exposure .	
*Fig.(22)	:Changes in plasma albumin & globulin (gm%)	218
	following exposure	240
*Fig.(23)	:Cell pattern of normal control rats bone marrow	219
*E' (2.1)	(X 100).	210
*Fig.(24)	:Hypercellular bone marrow obtained from rats	219
+T" - (25)	exposed for 2 months (X 40).	220
*Fig.(25)	:Hypercellular bone marrow obtained from rats	220
	exposed for 4 months, showing the odd	
*Fig (26)	polynucleated large cells (X 40). Bone marrow obtained from rate exposed for 6	220
*Fig.(26)	:Bone marrow obtained from rats exposed for 6	220

List of Contents

	Page
*INTRODUCTION	1 - 2
*AIM OF THE WORK	3
*REVIEW OF LITERATURE	4 - 43
*MATERIALS AND METHODS	44 - 84
*RESULTS	85 - 220
*DISCUSSION	221 - 251
*SUMMARY	252 - 254
*CONCLUSIONS	255 - 256
*REFERENCES	257 - 282
*ARARIC SUMMARY	

INTRODUCTION

INTRODUCTION

Living organisms are complex electrochemical systems that evolved over the years in a world with relatively limited electromagnetic energy emitters, and could interact with and adapt to this environment. However, in recent years, there has been a massive introduction of equipments that emit electromagnetic fields (EMFs) in an enormous range of frequencies, modulations, and intensities, and living organisms have not had the opportunity yet to adapt to such virtually ubiquitous environment (Fery, 1993).

The possibility that electromagnetic fields could contribute to chronic human disease has been raised by certain epidemiological studies, though there has been a long history of lore suggesting that magnetism and electricity influence human health generally for the better (Sagan, 1992). More recently, Little (1995), in his review on the environmental toxins that produce harmful effects in children, listed EMFs as one of the common toxic factors affecting child health.

Since everyone in modern society is exposed to EMF, increasing concern has been aroused over the health effects of exposure to EMF. In fact, a variety of biological effects have

been reported in response to weak electric and magnetic fields at levels similar to those encountered in the home (Kowalczuk et al., 1991). The authors added that measurable changes in many different biological phenomena resulted from exposure to such weak fields, from effects on animal behaviour or on the immune response, to alterations in the intricacies of cell biochemistry and increased incidence of certain types of cancer.

Though research in this field has remained outside the general interest of biologist for a long time, it has become a popular subject in recent years. As reports concerning the biological effects of exposure to EMF are controversial, further studies in this respect would be justified.

AIM OF THE WORK

AIM OF THE WORK

This study was carried out to investigate the effects of exposure to low-frequency electromagnetic fields emitted from a colour TV set, as example of household appliances in everyday use, on different haematologic parameters, in order to throw more light on the electromagnetic bioeffects.